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Abstract 
This study investigates the joint production planning and warehouse layout under 

uncertainty. Today’s competitive business world needs to be investigated by models which 

are capable of considering uncertain nature of the problems, especially when the historical 
data is not available or the level of uncertainty is high. Joint production planning and 

warehouse layout problems is almost a novel and new area in both academics and practice. 

For warehousing problem, the eventually of rental warehouses and new allocations is 
enabled in each planning horizon period. A bi-objective MILP model is proposed and fuzzy 

distributed parameters and chance constraints are taken into considerations. One of the 

objective functions deals with the cost associated parameters and variables while the 
second one minimizes the fluctuations of the work labor in each planning period. A simple 

test problem along with a case study is investigated by the proposed model. The obtained 

results prove the applicability of the proposed model in real-world scale problems. 

Keywords: Warehouse layout, production planning, robust possibilistic programming, 
fuzzy programing 

 

1-Introduction and literature review  
Production planning and warehouse layout decisions have been studied thoroughly by many researchers. 

Warehouse space is one of the key issues in both optimizing the warehouse management and smooth 

production planning. This importance leads us toward an integrated decision-making process which will 
tackle with capacitated lot-sizing problem along with warehouse layout problem in order to coordinate both 

decisions effectively. There are some significant studies reviewing the models and problems of lot-sizing. 

For instance see (Buschkühl et al., 2010, Jans and Degraeve, 2007). Existing studies indicate that the lot-
sizing problems are generally hard to solve. This complexity suggests the use of heuristics or relaxations 

and decomposition methods in order to reduce the complexity of the problem. On the other hand, production 

planning is one of the very first problems introduced in business optimization environment. But the joint of 

these two important decisions haven’t been studied well enough. 
Recently, an interesting study is done by Zhang et al. (2017). They have introduced a MILP model to 

integrate the warehouse layout problem with production planning in food industry but they didn’t consider 

the highly uncertain nature of the real-world class problems to avoid complexity.  
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A large body of research focuses on the modeling and design of various components of production-
distribution problems. Benefits and challenges of integration are summarized along with emphasizing on 

the need for practical analytic models and efficient solution methods. 

   One of the major challenges for manufacturers is providing the retailer by retaining stockpiles. However, 

retaining actions for large inventory require increased operational costs. In addition, a stock-out may not 
only result in order cancellations, but may also affect the probability of future customer demand. In order 

to evade such a difficulties and notoriousness, integrated decision making can assure the decision makers 

and supply managers of availability of the stock in the right place within a right cost. 
The production-distribution problems become more challenging when information on parameters of the 

model like demand and availability of raw materials is imprecise. To address the uncertainty in our model 

we apply fuzzy parameters on the proposed model. Fuzzy set theory offers strong analytical support for 
capturing uncertainty. Fuzzy logic has found numerous applications due to its simplicity on implementation, 

flexibility and tolerant nature for handling imprecise data. Uncertainty is a lethal factor if it is ignored, 

especially in real-world problems where the historical data is not available or the nature of the problem 

needs fuzzy applications in decision making (Moradi et al., 2019, Babazadeh and Sabbaghnia, 2018).  
Storage location assignment and warehouse layout problem can be used interchangeably. As mentioned 

earlier there have been lots of studies investigating the details of this problem. Details such as different 

operations and amendment in storage process. Storage location assignment and warehouse layout problem 
is about determining the location of goods and items while considering the storage requirements like 

structure and capacity. Some all-inclusive and extensive reviews are done on warehousing and storage 

operations, for instance see Gu et al. (2010). Researchers divide the layout policies according to the different 
rules applied to locate the goods in a warehouse, in general there are five main policies introduced by De 

Koster et al. (2007). Besides, lots of studies have investigated the effect of each policy and examined the 

utilization can be achieved and one of the most applied policies is the class-based storage policy 

(Sabbaghnia and Taleizadeh, 2020). Regarding this policy there is wide range of studies that can be 
mentioned for instance interested readers can refer to Pan et al. (2014). 

   As mentioned, capacitated lot-sizing problem (CLSP) is one the most studied problems in production 

planning. This problem is proved to belong to the NP hard classification (Florian and Klein, 1971). To 
escape the computational complexity many exact and heuristic algorithms have been developed. The review 

of the literature indicates that the integration decision making of warehouse layout and production planning 

has been neglected through past decades and developing a mathematical model which will able the decision 

makers to determine the optimal coordinated and integrated decisions while considering the uncertain 
nature of the problem is quite necessary. CLSP still is an open area and studies are developing regarding 

production planning problem (Jiang et al., 2017, Menezes et al., 2017, Song et al., 2017, Vogel et al., 2017). 

The conclusion of the above-mentioned insights could be presented as follows; production planning has 
an undeniable role in performance of a production system. The attributed decisions play a critical role in 

survival of the company in today’s competitive business. On the other hand, short term decisions like 

storage layout also have a strong effect on performance of the production system and costs of the system. 
Fortunately, the storage location problem and warehouse layout problem have been investigated thoroughly 

and comprehensively by many researchers and practitioners. But the joint problem of production planning 

and warehouse layout has been neglected and there are a few studies regarding this integration and 

cooperative decision making. 
   This study aims to cope with the integration of production planning as a medium-term decision and 

warehouse layout as a short-term decision with uncertainty considerations. The main contribution of this 

work is the insertion of uncertainty considerations in the model, specifically the parameters of the proposed 
model. As mentioned, fuzzy theory has the potential to aid the decision makers especially when there is no 

historical data or the type of the problem needs subjective data rather than objective. Joint production 

planning and warehouse layout problems is almost a novel and new area in both academics and practice. 
For warehouses, the eventually of rental warehouses and new allocations in each period of planning horizon 

is considered. A bi-objective MILP model is proposed and the fuzzy distributed parameters and chance 

constraints are taken into considerations. One of the objective functions deals with the cost associated 
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parameters and variables while the second one minimizes the fluctuations of the work labor in each planning 
period. A simple test problem along with a case study is investigated by the proposed model. 

As for the warehouses, we consider them in two main categories, first are the facilities that the firm owns 

them and second are facilities that can be rent at any time if a contract has already been signed for them or 

they are just available upon request with no need of pre-reservation. Another decision about warehouses is 
the location of them, whether they are close to production sites or consumer area. Numerical examples are 

developed to study the performance of the proposed approach and analyze the sensitivity of the obtained 

solutions. A case study is applied to investigate the solutions of the model in real case industries. 

2-Model description 
   Here, a warehousing system in auto-industry is analyzed and studied. Production quantities and inventory 
decisions are considered along with the warehousing decisions. In each period, storage assignments, 

production rate and inventoried amount of the items are determined with an interactive and integrated 

mathematical model. At the beginning of each period the possibility of rental warehouses is taken into 
account. The first objective of this model is to minimize the total cost of the system and the second one is 

to minimize the fluctuations of the hiring and firing the work force of the production area. In today’s 

business environment, crisp and deterministic models can’t deal with the complexity arising in this area. 

Most of the parameters, e.g., demand data, production costs, traveling time etc., are tainted with a high 
degree of uncertainty in real-life situations. Lack of knowledge about the exact values of parameters leads 

us toward the stochastic programming models. One of the well-known procedures is the applications of the 

fuzzy-sets theory in managerial problems. Here, a fuzzy mathematical programming (FMP) approach is 
used to deal with the uncertain nature of the parameters and insufficient available objective data. The 

following are the notations used in modeling procedure. 

Table 1. Parameters and Decision variables 
Indices 

i Index of products 
w Index of warehouses  
j Index of the warehousing and storage location in storage area 
l Index of work force skill level and experience 
s Index of work hours types (regular, overtime and subcontracted) 
k Index of demand area 
t Index of the periods of the planning horizon 

Parameters 
t

isc
  

Variable production cost per unit of item i in working shift s in period t 

t

isf
  

Production setup cost of item i in working shift s in period t 

t

lscs
  

Salary cost of work force with skill level l in working shift s in period t 

t

lsch
  

Hiring cost of work force with skill level l in working shift s in period t 

t

lscl
  

Laying-off cost of work force with skill level l in working shift s in period t 

t

ilb
  

Unit process time of item of item i by l-skilled work force in period t 

t

ilb
  

1, if item i requires a l-skilled operator in period t; 0, otherwise 

t

sCapT
  

Time capacity in working shift s in period t 

t

iwh
  

Holding cost per unit of item i in warehouse w period t 

t

i   
Shortage cost per unit of item i in period t 

1

jwd
  

Distance from production area to the jth location in warehouse w 

2

jwd
  

Distance from the jth location in warehouse w to the output point 
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wkd
  

Distance from the warehouse wth to the demand point k in period t 

t

ijwp
  

Unit travel cost for item i form production area to the jth location in warehouse w in period t 

t

ijwq
  

Unit travel cost for item i form jth location in wth warehouse to the output point in period t 

t

iwkr
  

Unit travel cost for item i from wth warehouse to the demand point k in period t 

t

ikde
  

Demand of item i in demand point k in period t 

t

wa
  

Rental fee of warehouse w in period t 

t

isCap
  

Production capacity of item i in working shift s in period t 

t

iwCapW
  

Warehouse w capacity for item i in period t 

Decision Variables 
t

isy
  

Production amount of item i in working shift s in period t 

t

iwkx
  

Amount of item i delivered to kth demand point from warehouse w in period t 

t

lsWF
  

Number of work force with skill level l in working shift s in period t 

t

lsHWF
  

Number of hired work force with skill level l in working shift s in period t 

t

lsLWF
  

Number of laid-off work force with skill level l in working shift s in period t 

t

iwI
  

Inventory level of item i at warehouse w in end of the period t 

t

ikz
  

Amount of shortage of item i in demand point k in period t 

t

isy
 

1, if item i is produced in working shift s in period t; 0, otherwise 

t

ijwu
 

1, if item i is assigned to jth location in warehouse w in period t; 0, otherwise 

t

ijwu
 

1, if item i is moved to jth location in warehouse w in period t; 0, otherwise 

t

ijwv
  

1, if item i is retrieved from  jth location in warehouse w in period t; 0, otherwise 

t

ijwn
  

1, if item i is inventoried in  jth location in warehouse w in period t; 0, otherwise 

t

wR
 

1, if warehouse w is rented in period t; 0, otherwise 

 

The proposed model is formulated as following: 

   

 

1 2

1

, , , , , , , , ,

, , , , , ,

 
t t t t t t t t t t

is is is is jw ijw ijw jw ijw ijw w w

i s t i j w t i k w t w t

t t t t

iw iw i ik

i w t i k t

t t

wk iwk iwk

t t t t t t

ls ls ls ls ls ls

l s t

Min Z f y c y d p u d q v d a R

h I z

r x

cs WF ch HWF cl LWF

     

    

   

     (1) 

 2

, ,

 t t

ls ls

l s t

Min Z HWF LWF                                                                                                                        (2) 

   First objective function is consisted of seven terms, in first term variable and fixed cost of production in 

each period is calculated. The second is the travel cost of the items from production area to the storage 

Parameters 
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locations and from the storage locations to the output point. The third term is the transportation delivery 
cost to the demand points in each period. The next is the cost of the renting warehouses. The fifth is the 

holding cost of inventoried items in each warehouse in each planning period, the sixth term is the cost 

associated with the amount of shortage happened in each period and finally the last one is the labor cost. 

For the second objective function denoted by(2), this objective is to minimize the fluctuations of the work 
force level during the planning horizon. It is obvious that the two objective functions are contradictory. The 

workforce level in each period would not be necessarily aligned with the minimum costs of the system. As 

for the second objective for the managers a smooth workforce plan has a crucial role in the productivity of 
the system. 

   The constraints of the model are presented as follows; 

1, , ,t

ijw

i

u j w t                                                                                                                                         (3) 

1, , ,t

ijw

i

u j w t                                                                                                                                        (4) 

1, , ,t

ijw

i

v j w t                                                                                                                                         (5) 

1, , ,t

ijw

i

n j w t                                                                                                                                        (6) 

 1

,

,t t t

ijw ik ik

j w k

v de z i t                                                                                                                           (7) 

,

,t t

ijw is

j w s

u y i t                                                                                                                                        (8) 

,

,t t

ijw iw

j w w

n I i t                                                                                                                                        (9) 

1 , , ,t t t

ijw ijw ijwv u n i j w t                                                                                                                      (10) 

1 , , ,t t t

ijw ijw ijwu n u i j w t                                                                                                                            (11) 

1 , , ,t t

ijw ijwn u i j w t                                                                                                                                    (12) 

, , ,t t

ijw ijwu u i j w t                                                                                                                                    (13) 

, , ,t t

ijw ijwv u i j w t                                                                                                                                    (14) 
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, , ,t t

ijw ijwn u i j w t                                                                                                                                   (15) 

1 , , ,t t t t

ijw ijw ijw ijwn u v n i j w t                                                                                                          (16) 

1 , ,t t t t

ls ls ls lsWF WF HWF LWF l s t                                                                                                (17) 

1 , ,t t t

ls ls lsLWF WF HWF l s t                                                                                                              (18) 

 1 1

,

,
t

t t t t t
ikiw ik ijw iw ik

w k j w w k

I z v I de z i t 
 

      
 

       (19) 

1 1

,

,t t t t t t

is iw ik iwk iw ik

s w k w k w k

y I z x I z i t               (20) 

,t t t t

is il il s

i l

y b b CapT s t
 

    
 

                                                                                                               (21) 

,t t t t t

ls s is il il

l i l

WF CapT y b b s t
 

   
 

                                                                                                    (22) 

, ,t t

is isy Cap i s t                                                                                                                                      (23) 

. , ,t t

is isy M y i s t                                                                                                                                 (24) 

, ,t t t

iw iw wI CapW R i w t                                                                                                                            (25) 

 , , 0 & , , , , , 0,1 , , , ,t t t t t t t t t

is iw ik is ijw ijw ijw ijw wy I z y u u v n R i j w k t      (26) 

   Constraints (3) ensure that each storage location only can be assigned to one item at each period. In other 

words, two items can’t be assigned to the same storage location at the same time. Constraints (4) ensure 

that at most one item can travel to one specified location in each warehouse in each time period. Constraints 
(5) ensure that at most one item can be demanded from each location of each warehouse in each time period. 

Constraints (6) ensure that at each time period, at most one item can be inventoried in each location of each 

warehouse. Constraints (7) state that number of retrieved items in each period and for each item is less than 
the summation of demand of that item and backordered demand for that item from the previous period. 

Constraints (8) state that the total number of products assigned to storage locations are equal to the amount 

of the production in each period. Constraints (9) ensure that the summation of the inventoried items in all 

storage locations are equal to the inventory level of that item in each period. Constraints (10) ensure that an 
item can be demanded from a storage location if it has been moved to that location already or has been 
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inventoried in that location in previous period. Constraints (11) state that an item could be moved to a 
location only if it is already assigned to that location and there is no inventoried item from the previous 

period. Constraints (12) ensure that if an item is inventoried in the previous period the binary assignment 

variable for that location is equal to one. Constraint (13) state that an item can be moved to a specified 

storage location only if it has been already assigned to that location. Constraints (14) indicate that an item 
can demanded from a specific storage location only of it has been already assigned to that location.    

Constraints (15) ensure that an item can be inventoried in a specific storage location only if it has been 

already assigned to that location. Constraints (16) state the balance of material flow in the system, it starts 
from production area to the output point in each period. Constraints (17) state the balance of work force 

considering hired and laid-off employees in each period. Constraints (18) ensure that the number of laid-

off work labors do not exceed the number of available work force in each period. Constraints (19) denote 
the balance of material flow with respect to the shortage and inventory of the items at the end of each period. 

Constraints (21) ensure that the required production time do not exceed the total available time in each 

working shifts. Constraints (22) indicate that the required production process time should be less than or 

equal to the available work labor in each working shift in each period of planning horizon. Constraints (23) 
ensure that the production quantity of each item do not exceed the production capacity of that item in each 

period. Constraints (24)-(25) indicate that items can be produced in a specific period if only the fixed-fee 

for set up is considered. In other words, in each period production process can be engaged only if the set-
up cost is taken into account. Constraints(26), are the non-negativity and binary restrictions of variables. 

   Proposed model can be simplified by some manipulations on the constraints and equations. By implanting 

the equation (16) into constraints (10) and some calculation leads to 0t

ijwn   which is satisfied due to the 

non-negativity restrictions of variables and therefor can be eliminated. Recall that  , , , , 0,1t t t t t

ijw ijw ijw ijw wu u v n R 

and this can be deduced that constraints (13) and (15) are satisfied by constraints (11) thus they can be 

eliminated. From both (10) and (11) one can drive out the(14). Furthermore, with(3), (10) and (11) the 

constraints denoted by (5) can be simply deduced.  
 

3-Accounting for data uncertainty 
   As already discussed in previous sections, in today’s competitive business environment, deterministic 

models can’t deal with the complexity arising in this area. Along with that, most of the parameters of the 

real-life problems are tainted with a high degree of uncertainty. In situations like this, the robustness degree 

of the solution is very vital to the managers. In this study, we consider a mid-term decision policy 
(warehouse layout decisions) along with a short-term decision policy (production planning) for the system 

and robustness of the determined decisions for the mid-term decisions are of particular importance. Fuzzy 

mathematical programming (FMP) is believed to be a strong and effective modeling approach especially in 
where, there is no historical data or the parameters values are vague and ambiguous. Following the FMP 

and robust programming are briefly introduced. Then based on the very most recent fuzzy measures in the 

literature the proposed model is defuzzied. 

3-1-Robust programming approach 
    In mid-term and long-term level decision making problems, feasibility and optimality robustness of the 

final solutions is important. Pishvaee et al. (2012a) describe the feasibility robustness and optimality 
robustness as follows; feasibility robustness means that obtained solution must continue to be feasible for 

(almost) all possible realization of the uncertain parameters whereas optimality robustness means that the 

deviations from the optimal objective function value should be negligible for (almost) all possible 
realization of the uncertain parameters. According to Pishvaee et al. (2012a), robust programming 

approaches can be classified into three subcategories; I) the hard worst-case robust programming, II) the 

soft worst-case robust programming, and III) the realistic robust programming. Interested readers can refer 

to Ben-Tal et al. (2009), Pishvaee et al. (2012a), Zahiri et al. (2014) and Mousazadeh et al. (2017). 
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3-2-Fuzzy mathematical programming approach 
   FMP is known to be a proper programming approach in addressing both epistemic uncertainty of the data 

and flexibility and elasticity in goals and constraints of the models. The two main classifications on FMP 

are known as possibilistic programming (Inuiguchi and Ramık, 2000) and flexible programming (Mula et 
al., 2006). Possibilistic programming is used when DMs deal with parameters where there is no historical 

data or the values are vague and ambiguous. Nevertheless, flexible programming is used when flexibility 

in objective function value or elasticity in some constraints are needed. One of the most well-known 
possibilistic programming approaches is the possibilistic chance-constraint programming (PCCP) 

approach. This approach is one of the wide spread methods in the literature because of its ability on 

controlling the confidence level of constraints and its compatibility with different types of fuzzy numbers 

(Pishvaee et al., 2012a). Necessity (N) and Possibility (π) measures are representing the extreme attitude of 
the parameters of a chance constraint programming (CCP) model and they do not have self-duality property 

(Pishvaee et al., 2012b).  

   Given a trapezoidal fuzzy variable 1 2 3 4( , , , )a a a a   where 1 2 3 4a a a a    and its membership function 

is given by (27). Following the Liu and Iwamura (1998) and Inuiguchi and Ramık (2000) the possibility 
and necessity measures of given trapezoidal variable can easily calculated for any confidence level. 

Equations (28)-(31) are representing the calculated values for all confidence levels equal or greater than 

0.5. Similarly, the credibility (Cr) measure could be calculated.  

1
1 2

2 1

2 3

( )

4
3 4

4 3

1

0 .

r

r a
a r a

a a

a r a

a r
a r a

a a

OW




  


  

 
  

 



                                                                                                                  (27) 

   1

1 2

2 1

1
r a

r r a a
a a

     


       


  (28) 

   4 1

3 4

4 3

1
a r

r r a a
a a

     


       


  (29) 

   3

3 4

4 3

1
r a

N r r a a
a a

    


       


  (30) 

   2

1 2

2 1

1
a r

N r r a a
a a

    


       


  (31) 

   Me measure introduced by Xu and Zhou (2013), is a strong tool in fuzzy problems environment. In this 

approach a spectrum of decisions is provided between necessity and possibility extreme points as follows: 

       . 1 .Me N                                                                                                                      (32) 



 

 

89 

 

   Where 0 1  , is the tuning parameter which states the optimistic or pessimistic attitude of the DM. It 

is clear that Possibility, Necessity and Credibility measures are special cases of Me for special values of λ. 

Similar to possibility and necessity measures the Me measure can be calculated. The crisp counterparts of 

both  Me r    and  Me r   would be piecewise functions and would not normally fit into one 

equation. We have: 

 

 
   

 

 
   

4 33

4 3

1 21

1 2

2 1

2 3

4 33

3 4

4 3

1
0.5 1

1

0.5

1
1

1

 

a ar a
if r

a a

a ar a
r a r a

a aMe r

if a r a

a ar a
r a r a
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   



  
 

 

 

  
  



  
      

 

 
    

  

   

  
      

 




 
 
 





 

  (33) 

 

 
   

 
   

 

1 2

2 1

1 2

1 2

2 1

2 3

3 4

4 3

2

2

3 44

1
0.5 1

1

1
1

1

0.5

a aa
if r

a a

a aa
r a r a

a aMe r

if a r a

aa
r a r a

a a

r

r

ar

  
   



  
  

 

 


 



 

  
      

 

  
      

   

   

    





 
 
 



  
 

  (34) 

   Please recall that Necessity (N) and Possibility (π) measures have extreme attitude toward the problem in 

CCP models. And that’s the main reason of adopting a more moderate approach namely Me measures to 

cope with the uncertainty of the parameters. To work more convenient, we develop the compact form of 

the proposed model as follows: 
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   Now without losing any generality, assume that vectors F, V, D and K representing the fixed setup costs, 
variable costs, demand for each item and capacity of the production sites are the imprecise and fuzzy 

parameters. In order to convert the possibilistic objective functions to their crisp equivalent the expected 

value operator is used, and to cope with constraints including imprecise parameters the Me measure is 

adopted. The parameters are assumed to follow a trapezoidal possibility distribution,  1 2 3 4, , ,      and 

note that when 2 3   it is simply altered into a triangular fuzzy number. With these descriptions the (35) 

model can be reformulated as follows: 
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                                                                                                                   (36) 

   It’s clear that the first objective function along with first two sets of constraints include fuzzy parameters 

denoted by trapezoidal possibility distributions mainly based on the expert subjective ideas and partially 
based on some historical data. Using transformations discussed over equations, the crisp equivalent of the 

proposed model based on the expected value operator and Me measure is as follows: 
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   Although the (37) model can effectively tackle with imprecise parameters, it fails to react to the deviations 

of objective function values from their expected value. Fluctuations from expected value of objective 

functions can cost a lot especially in today’s extreme competitive business. Furthermore, in this 

programming approach the minimum confidence level of constraints is ascertained by the experts or based 

on DM’s preferences which cannot assure the optimality of attained solutions. To cope with these 
deficiencies, as investigated in the literature review, a combination of robust and fuzzy approaches are 

introduced and widely applied Zahiri et al. (2014). 

   A solution is called robust if has both feasibility robustness and optimality robustness (Pishvaee et al., 
2012a). If a solution remains feasible for all possible values of uncertain parameters it has feasibility 

robustness and if the objective function value remains optimal or near optimal for all possible value of 

imprecise parameters it meets the optimality robustness. Classical robust possibilistic programming has 
used Necessity to tackle with the uncertainty but as discussed earlier, Me fuzzy measure has a more realistic 

point of view to the imprecise data and parameters. We provide the robust possibilistic programming model 

based on Me measures as follows: 
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  (38) 

   In first objective function of model, the expected value of Z (first term), improves the expected 

performance value of the objective function. The second term controls the optimality robustness of the final 

solution through minimizing the deviations of upper bound of the objective function from the expected 

value of it. As it’s clear, the second objective function has no fuzzy parameter; therefore, there is no need 
to add any term to control optimality robustness into it. Furthermore, the parameter γ is the preference 

weight of the optimality robustness over the feasibility robustness. The upper bound of the first objective 

function can easily be calculated as follows: 

max

1 4 4Z F Y V X                                                                                                                                                  (39) 

   The other two terms of first objective function of model, control the feasibility robustness of the solutions 

by minimizing the violations of RHS of chance constraints from their worst-case value of the uncertain 

parameters by penalty values , , ,     . This is very important to note that these penalty values can be 

defined and determined due to the problem context. For example, shortage penalty costs and costs off idle 
capacity of the system can be calculated and adjusted to these penalty costs. Bear in mind that in former 
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model the confidence level (i.e., α and β) of the chance constraints are variables and their final values are 
optimized in solving procedure. This is worth mentioning that the cost-benefit aspect of this problem allows 

us to develop a realistic robust programming rather than a hard/soft worst case robust programming model.  

4-Coping with objective functions 
   There are three main classes of approaches to deal with multi objective functions in mathematical 

programming literature, priori, interactive and posteriori classes. Interactive approaches try to accumulate 

the favorable features of the other two approaches while averting the inefficiencies of them. Despite of the 
priori approaches, interactive methods aim to look into the preferences of the decision makers attentively 

and generating different Pareto-optimal solutions. Here, we will apply the interactive method proposed by 

Torabi and Hassini (2008), (TH) to our model to deal with objective functions of the model.  
 

 

 

The steps of the TH approach are as follows: 

 Determine the positive ideal solution (PIS) and negative ideal solution (NIS) for each objective 

function 

 Calculate a linear fuzzy membership function for each objective function as follows: 
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                                                                                                   (40) 

Where 
jZ denotes the satisfaction degree of the jth objective function. 

 Convert the corresponding crisp bi-objective model into a single-objective model applying TH 

aggregation function as follows: 
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                                                                                                                    (41) 

   Where 0 indicate the minimum satisfaction degree of objective functions,  and kw stand for objective 

functions compromise coefficient and importance of the jth objective function (denote that 1,  0k k

k

w w  ). 

 Determine the values of importance weight of the objective functions and coefficient of 

compromise between objective functions and solve the single-objective model. 

5-Implementation and evaluation 
   Here, the proposed model’s performance is investigated through a test problem. The proposed model is 

coded in GAMS 24.7.4 optimization software using CPLEX solver and all the executions are implemented 

on a Corei7 2.40 GHz laptop with 8 GB of RAM. The trapezoidal fuzzy numbers of given uncertain 
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parameters are considered as (0.9 ,0.95 ,1.05 ,1.1 )    . The test problem size is 10*5*500*3*2*5*5 

(Table ) and input parameters follow a uniform distribution as given in Table . 

Table 2. Size of the problem indices 

Indices 

i /1*10/ 

w /1*5/ 

j /1*500/ 

l /1*3/ (novice, intermediate, expert) 

s /1*2/ (regular time and overtime) 

t /1*5/ 

Table 3. Input parameters of the test problem 

Parameter Range Parameter Range 

t

isc
 

(10, 30)uniform  
t

wkd
 

(25, 40)uniform  

t

isf
 

(500, 2500)uniform  
t

iwkr  
(5,12)uniform  

t

lscs
 

(30,300)uniform  
t

ijwp
 

(8,15)uniform  

t

lsch
 

(40, 70)uniform  
t

ijwq
 

(8,15)uniform  

t

lscl
 

(80,120)uniform  
t

iwCapW  
(450,500)uniform  

t

ilb
 

(1,10)uniform  
t

sCapT
 

(450,510)uniform  

t

ikde  
(70, 250)uniform  

t

isCap  
(150,550)uniform  

t

iwh
 

(3,8)uniform  
t

wa  
(150, 250)uniform  

t

i  
(15, 20)uniform    

   The optimal results of the test problem are presented on Table. The τ0 is the minimum satisfaction degree 

of the objective functions as already presented in model (41). The controlling parameters are considered to 

be equal to 0.6, namely, , , , , , ,        . Here, weight coefficients run the gamut from 0 to 1 by step size 

0.2 for both objective functions. As expected, objective function values increase (decreases), as the weight 

coefficient of that objective decreases (increases). This trend is same for objective functions satisfaction 

degree. More analysis on controlling parameters is conducted, but it seems with a moderate set of 

controlling parameters an acceptable lower bound for TH objective function (model(41)) is achievable.  

Table 4. Optimal solution of the test problem with controlling parameters all equal 0.6 

Weight 

coefficients 

TH 

Objective 

Function 

τ0 μ Z1 Z2 
CPU time 

(min) 

w= (0.0,1.0) 0.857 0.857 (0.857, 0.907) 4.382299E+9 11658 62 

w= (0.2,0.8) 0.855 0. 864 (0.864, 0.877) 4.306002E+9 12458 81 

w= (0.4,0.6) 0.854 0.873 (0.873, 0.851) 4.127302E+9   13158 108 

w= (0.6,0.4) 0.852 0.877 (0.884, 0.847) 4.086544E+9 14059 142 

w= (0.8,0.2) 0.858 0.850 (0.889, 0.830) 3.971884E+9 14659 67 

w= (1.0,0.0) 0. 857 0.812 (0.899, 0.812) 3.518649E+9 15464 88 
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   To shed light on the obtained results of the test problem, an illustration is presented in Fig , to demonstrate 
the conflicts of the objective functions and their behavior through the weight coefficients spectrum. For 

Transparency considerations, the objective function values are normalized. CPU time is considerably high 

when the weight coefficients values are approximately near each other, e.g., w= (0.4, 0.6) and w= (0.6, 0.4). 

This higher CPU time occurs because of the trade-off between objectives and higher computational effort 

for that purpose. (Note that the notation Z in all the tables and figures is representing the crisp Z). 

 

Fig 1. Normalized Pareto solutions based on optimal values of objective functions 

   The parameter ϕ in model(41) plays a balancing role between objective functions minimum satisfaction 
degrees and summation of objective function satisfaction degrees. For small amounts of ϕ the importance 

of high weighted objective function is highlighted while for large values of ϕ, the minimum satisfaction 

degree is given more importance. Table  runs the gamut from 0.1 to 0.9 for the parameter ϕ. The weight 

factor for first objective function (cost) is high as it is the first priority in any production planning program. 
From model(41) we learn that the objective function(s) with higher weight coefficient is drastically 

sensitive to the values of the ϕ. under controlling parameters equal to 0.7 and weight coefficients (0.7, 0.3) 

Table 5. Optimal solution values for the spectrum of ϕ 

ϕ 

TH 

Objective 

Function 

τ0 μ Z1 Z2 

CPU 

time 

(min) 

0.9 0.848 0.848 (0.848, 0.852) 4.595500E+9 13857 150 

0.8 0.847 0.844 (0.864, 0.844) 4.465049E+9 13918 97 

0.7 0.852 0.848 (0.867, 0.848) 4.405344E+9 13979 30 

0.6 0.851 0.848 (0.856, 0.848) 4.495372E+9 14359 103 

0.5 0.854 0.811 (0.935, 0.811) 3.865798E+9 14464 22 

0.4 0.865 0.803 (0.950, 0.803) 3.746038E+9 14595 16 

0.3 0.875 0.773 (0.981, 0.773) 3.499516E+9 14669 16 

0.2 0.893 0.788 (0.975, 0.788) 3.549613E+9 14767 13 

0.1 0.899 0.868 (0.973, 0.773) 3.562581E+9 14969 77 

Table is analyzing the behavior of TH objective function and satisfaction degree of the proposed 
model’s objectives under different values of γ. These executions are taken under (0.7, 0.3) weight 

coefficients for the objectives and all the other controlling parameters are considered to be equal to 0.6. The 

parameter γ is penalizing the objective because of its possible violation from the average optimal amounts, 

see the crisp model and equation(39). With no surprise, as the value of γ raises the optimal value of first 
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objective function increases. To point out the impact of this parameter, one should analyze the minimum 
satisfaction degree of objectives along with TH objective function value and satisfaction degree for each 

different rows of the presented table. Minimum satisfaction degree is slightly increasing as the penalty 

coefficient raising, the same behavior is traceable and noticeable on TH objective function values. Second 

objective function is independent from values of γ, but it is under influence of minimum satisfaction degree, 

so as the τ0 increases, we expect an improvement on objective values. 

Table 6. Optimal solutions under different values of γ 

γ 

TH 

Objective 

Function 

τ0 μ Z1 Z2 
CPU time 

(min) 

0 0.851 0.848 (0.882, 0.868) 3.523589E+9 16746 75 

1 0.857 0.856 (0.862, 0.856) 4.428870E+9 16740 43 

5 0.857 0.855 (0.863, 0.855) 7.586376E+9 16727 160 

10 0.857 0.856 (0.861, 0.856) 1.15216E+10 16715 44 

20 0.863 0.860 (0.870, 0.860) 1.89787E+10 16703 81 

50 0.864 0.863 (0.871, 0.863) 4.22695E+10 16688 72 

   Controlling parameters of the proposed model have a crucial role in finding the optimal solution and 

execution time. The computational power used in this paper are a Corei7 2.40 GHz laptop with 8 GB of 
RAM. As discussed earlier, to escape the complexity of the non-linear models, α and β are treated as 

parameters. Here, on Table, a sensitivity analyses are conducted based on different values of controlling 

parameter, ranging from 0.5 to 0.9 by step size 0.1. As controlling parameters increases, the feasibility 

robustness and optimality robustness are tightened and in result the optimal values are growing and thus 

the newly calculated optimal values don’t outperform the older ones.  

Table 7. Optimal solutions under different values of controlling parameters 

Controlling 

Parameters 

TH 

Objective 

Function 

τ0 μ Z1 Z2 

CPU 

time 

(min) 

0.5 0.846 0.798 (0.941, 0.798) 3.404970E+9 11978 62 

0.6 0.847 0.844 (0.856, 0.844) 4.149143E+9 14358 86 

0.7 0.851 0.860 (0.864, 0.860) 4.169530E+9 16745 90 

0.8 0.854 0.840 (0.856, 0.840) 4.406998E+9 19129 74 

0.9 0.861 0.850 (0.865, 0.850) 4.518971E+9 21515 94 

   To do more investigations on α and β parameters, the model is conducted under following setting as well, 

all controlling parameters are considered to be equal to 0.6 and weight coefficients are (0.7, 0.3). The 
obtained results are given in Table. As the values of α and β increase the objective function values for both 

objectives of the proposed model are outperforming the objective function values with lower α and β values. 

However, modest values for these parameters lead into conservative results and a smooth degradation in 

second objective function’s optimal values. 

Table 8. Optimal solutions under different values of α, β 

α, β 
TH Objective 

Function 
τ0 μ Z1 Z2 

CPU time 

(min) 

0.5 0.860 0.860 (0.861, 0.860) 4.221304E+9 17933 217 

0.6 0.853 0.878 (0.884, 0.847) 4.083374E+9 14279 192 

0.7 0.892 0.877 (0.897, 0.870) 3.987201E+9 14028 113 

0.8 Infeasible 

0.9 Infeasible 
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6-Conclusions 
   In this study the joint production planning and warehouse layout problem is investigated under 

uncertainty. Joint production planning and warehouse layout problems is almost a novel and new area in 
both academics and practice. For warehouses, the eventually of rental warehouses and new allocations in 

each period of planning horizon is considered. A bi-objective MILP model is proposed and the fuzzy 

distributed parameters and chance constraints are taken into considerations. A simple test problem along 

with a case study is investigated by the proposed model. The results indicate the efficiency of the proposed 
model in optimizing the behavior of the under-study problem. With the high enough cost sensitivity 

coefficients, the minimization of the total cost is achievable while the work labor lay-offs are not that much. 

The same results could be obtained if the decision-makers attend the work labor fluctuations more than the 
total cost of the production system.  

   Although the proposed model considers the real-world conditions, there is further room for further 

developments, complex warehousing policies needs to be addressed in an integrated environment with 
operational and tactical level decisions of a production system. The joint strategic and tactical decisions of 

a supply chain, considering warehousing in an uncertain environment could be another research avenue. If 

a more realistic setting is about to be investigated, the internal operations in warehouses could introduce 

some major managerial insights in this field of research. On computational approaches, along with the novel 
TH approach, evolutionary algorithms have proven their applicability in dealing with complex structured 

problems.  
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