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Abstract 
In some practical applications, the quality of a process or a product is characterized 

by a relationship, namely a profile between a response variable and one or more 
explanatory variables. Assuring the capability of a profile to meet the process 

requirements is particularly important. Process capability indices (PCIs) are widely 

used to measure whether a process is capable of reproducing product items within 
the specification limits (SLs). Background literature on the PCIs for profiles 

mostly take crisp values for process data. However, in practice, the outcomes of a 

measurement are often imprecise. So, the basic assumption of crisp data for 
process capability analysis (PCA) in profiles is not valid. Hence, fuzzy methods 

are developed to analyze the capability of a fuzzy profile with fuzzy response data. 

To this end, we extend the functional approach based on fuzzy set theory for the 

situations in which the SLs and target values of the response variable are imprecise. 
The performance of the proposed indices is investigated through simulation 

studies. The simulation results confirm that the proposed method performs well 

regarding 𝐷𝑝,𝑞-distance between the estimated value and the true value of fuzzy 

PCIs. Furthermore, a case study shows the applicability of the proposed method. 

Keywords: Fuzzy simple linear profile, fuzzy process capability index, functional 
approach, fuzzy random variable (FRV)  

 

1- Introduction 
Profile monitoring is the use of control charts in situations in which the quality of a process or product can 

be characterized by a functional relationship between a response variable and one or more explanatory 
variables. This relationship is referred to as a profile. According to the applications, there are various types 

of profiles including linear, nonlinear, generalized linear model (GLM), nonparametric, and wave-shaped 

profiles. Most of the works on profile monitoring are conducted on a linear profile (Ebadi and Shahriari, 
2013; Wang, 2014a). Generally, there are two kinds of response variable including univariate and 

multivariate. The univariate response is the case that the response variable is related to only one explanatory 

variable, while in the multivariate response, multiple response variables are considered simultaneously. 
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    On the other hand, in some real-world applications, the measured values or expression of response data 
has a kind of uncertainty that lead to fuzzy response data. The uncertainty usually comes from several 

sources such as vague estimation, observations, measurement error, human judgment and linguistic 

definitions and so forth. Note that these data represent two kinds of uncertainty including vagueness and 

randomness. The first one can be modeled by the theory of fuzzy sets which initially proposed by Zadeh 
(1965), and the latter is related to variability and could be modeled by probability distributions and 

stochastic models (Viertl, 2011). In the presence of both types of uncertainties (vagueness and randomness), 

fuzzy random variables (FRVs) are used to model status of the process. So, in these situations, the response 
data is denoted by a fuzzy random variable (FRV) and a fuzzy regression model can be used to construct 

the fuzzy profile model (Maleki, Amiri and Castagliola, 2018). 

   Process capability analysis (PCA) is a statistical method that has been used for decades with a purpose to 
reduce the variability in industrial processes and products. The major outputs of PCA are process capability 

indices (PCIs). For an in-control process, PCIs are used to provide a numerical measure to find out how 

well a process produces products that conform to engineering specification limits (SLs). In the literature, 

capability analysis of process with single and multivariate product quality characteristics have been 
conducted based on univariate and multivariate PCIs, respectively. However, as mentioned in Woodall’s 

(2007) review article on profile monitoring, there has been no research on the capability analysis of profile 

processes up to the year 2007. So, because of the importance of assuring the process capability in profiles 
to meet the requirements, he offered researchers to investigate PCIs for profile processes. After that, 

evaluating the capability of profile processes has been studied by some researchers. Generally, there are 

two different approaches in capability assessment of the profile including capability assessment using 
response or profile parameters. Here, a comprehensive review of the literature study on PCIs for profiles 

during the period 2009-2019 is discussed and summarized in table 1. The main information about the profile 

type, the type of the explanatory and response variable, process assessment approach, and the status of SLs 

(constant, functional, one-sided, and two-sided) is presented in table 1. Research in the area of PCIs for 
profiles started by study on simple linear profile (SLP). The first attempt was done by Shahriari and Sarafian 

(2009). They presented the PCI of response variable based on prediction interval and used the 𝐶𝑝𝑘  index in 

n fixed levels of the explanatory variable. Finally, they introduced the minimum value of them as a SLP 

process index indicator. This may result in underestimation of the process capability (PC); hence Ebadi and 

Shahriari (2013) presented two methods based on observed response and the value of the predictive 
response variable to resolve this problem. In another effort, Hosseinifard and Abbasi (2012a) utilized the 

proportion of nonconforming items to estimate the PC of SLPs. They considered both fixed and random 

explanatory variables with constant and functional SLs to assess the effectiveness of their method. 
Furthermore, Hosseinifard and Abbasi (2012b) studied the PCI for non-normal linear profiles. Ebadi and 

Amiri (2012) presented three methods for measuring PC in multivariate SLPs. Wang (2014a) proposed an 

index for measuring the process yield for SLPs and also, he developed two new indices for SLPs with one-

sided specification (Wang, 2014b). Wang and Tamirat (2014, 2015) studied process yield analysis for 
autocorrelation between and within linear profiles, respectively. Subsequently, Wang (2016) and Wang and 

Tamirat (2016) studied several process yield indices for multivariate linear profiles. While the profile 

parameters are monitored to control profile processes, Karimi Ghartemani, Noorossana, and Niaki (2016) 
and Chiang, Lio, and Tsai (2017) introduced methods to determine PCI for SLP based on profile intercept 

and slope. Since all mentioned methods mainly focused on the response variable only in some levels of the 

explanatory variable and ignore all ranges of X-values, Nemati et al. (2014a) introduced a functional 

approach to evaluate the PC of SLP considering the entire domain of the explanatory variables of the profile.  
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Table 1. A literature review on PCIs for profiles 

ID Ref Profile Type 
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1 
Shahriari and 

Sarafian (2009) 
SLP           

2 
Hosseinifard and 

Abbasi (2012a) 
SLP           

3 
Hosseinifard and 

Abbasi (2012b) 
SLP           

4 
Ebadi and Amiri 

(2012) 
SLP        

   

5 
Ebadi and Shahriari 

(2013) 
SLP           

6 Wang (2014a) SLP           

7 Wang (2014b) SLP           

8 
Wang and Tamirat 

(2014) 
SLP           

9 Nemati et al. (2014a)  SLP            

10 Nemati et al. (2014b) Circular profile           

11 
Wang and Guo 

(2014) 
Nonlinear profile           

12 
Rezaye Abbasi 

Charkhi et al. (2015) 
Logistic profile           

13 
Guevara and Vargas 

(2015a)  
Nonlinear profile           

14 
Guevara and Vargas 

(2015b)  
Nonlinear profile           

15 Wang (2015)  Circular profile           

16 
Wang and Tamirat 

(2015) 
SLP           

17 
Wang and Tamirat 

(2016) 
SLP           

18 Guevara et al. (2016) Nonlinear profile           

19 
Rezaye Abbasi 

Charkhi et al. (2016) 
Logistic profile           

20 Wang (2016) SLP           

21 
Karimi Ghartemani et 

al. (2016) 
SLP           

22 Chiang et al. (2017) SLP           

23 
Alevizakos et al. 

(2018) 
Poisson profile           

24 
Pour Larimi et al.  

(2019) 
Nonlinear profile           

25 
 Alevizakos et al.  

(2019) 
Logistic profile           

26 

Abbasi Ganji and 

Sadeghpour Gildeh 

(2019) 

SLP           

 

   As seen in table 1, during the period between 2009 and 2014, most of the PCIs for profile data have been 

provided for linear regression profiles. After that, Nemati et al. (2014b), Wang (2015) and Pour Larimi, 

Nemati, and Safaei (2019) utilized the functional approach to introduce PCIs for more complicated profiles 
such as circular and nonlinear profile. Wang and Guo (2014) evaluated the process yield for processes 

characterized by nonlinear profiles. Guevara and Vargas (2015a) and Guevara, Vargas, and Castagliola 
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(2016) proposed some methods to measure the capability of nonlinear profiles and afterwards, Guevara and 
Vargas (2015b) extended the approach of Guevara and Vargas (2015a) to evaluate the capability of 

processes characterized by multivariate nonlinear profiles. Considering logistic regression profiles, Rezaye 

Abbasi Charkhi, Aminnayeri, and Amiri (2015, 2016) introduced methods to measure capability of process. 

Alevizakos, Koukouvinos, and Lappa (2019) conducted a comparative study on the presented PCIs in 
Rezaye Abbasi Charkhi, Aminnayeri, and Amiri (2015, 2016) for logistic regression profile. In another 

study, Alevizakos, Koukouvinos, and Castagliola (2018) introduced a PCI for the Poisson regression 

profile. 
   In dealing with real engineering problems, it is a frequent occurrence that due to the measurement 

uncertainty such as the appraiser’s subjective judgement based on their experience, unstable measurement 

instrument, and change of measurement environment or the nature of quality characteristics, the data can’t 
be recorded or measured precisely. Therefore, in the presence of these situations, the traditional PCIs with 

crisp data may mislead to know the capability of manufacturing process. On the other hand, in some 

applications, there are processes with linguistics or imprecise SLs (Parchami et al., 2005). In this regard, 

many studies aggregate PCIs with the fuzzy set theory. Literatures on PCIs in fuzzy environments could be 
clustered into four groups in terms of their methods in estimating fuzzy PCIs. The first group is related to 

PCIs based on fuzzy quality concept. Bradshaw (1983) used the fuzzy set theory as a basis for a graded 

degree of product conformance based on a graded representation of the SLs in the field of fuzzy process 
control. An initial study by Yongting (1996) introduced the concept of fuzzy quality in PCA and presented 

a PCI as a crisp number. Then, it is extended by Parchami and Mashinchi (2010), Parchami et al. (2013) 

and Sadeghpour Gildeh and Moradi (2012) on fuzzy SLs, fuzzy data and SLs, and general multivariate 
PCIs for crisp data, respectively. The second group includes the methods based on estimating the 

membership function of fuzzy PCIs, which was first introduced by Lee (2001) and developed by others in 

univariate and multivariate cases (see Hong, 2004; Tsai and Chen, 2006a, 2006b; Shu and Wu, 2009, 2012; 

Chen, Lai, and Nien, 2010; Abdolshah et al., 2011; Abbasi Ganji and Sadeghpour Gildeh, 2016b, 2016c). 
The third group consists of the methods based on the extension principle. Parchami et al. (2005) suggested 

a fuzzy PCI based on the extension principle for the cases in which SLs are fuzzy numbers. Then, Moeti, 

Parchami, and Mashinchi (2006) discussed a generalized version of PCIs introduced in (Parchami et al., 
2005), based on L–R fuzzy number SLs. Also, similar arguments and findings can be seen in (Kahraman 

and Kaya, 2009; Kaya and Kahraman, 2011a). The last group include the methods that estimate fuzzy PCIs 

using Buckley’s (2004) approach. Parchami and Mashinchi (2007) proposed an algorithm for fuzzy 

estimation of PCIs based on Buckley’s approach. Hsu and Shu (2008) estimated fuzzy PCIs when 
observations and SLs are all real numbers using Buckley’s approach. Also, the Buckley’s fuzzy estimation 

method is used to obtain the membership function of several PCIs by Kaya and Kahraman (2010, 2011b),    

Moradi and Sadeghpour Gildeh (2013) and Abbasi Ganji and Sadeghpour Gildeh (2016a).  
   In the case of profile capability assessment, there is a recent paper in which fuzzy logic is applied to 

measure the capability of SLP when SLs are imprecise (Abbasi Ganji and Sadeghpour Gildeh, 2019). On 

the other hand, in some real-world applications, it is likely to face with imprecise or linguistic response 
variables. Hence, some researchers have conducted studies on fuzzy profiles analysis (Noghondarian and 

Ghobadi, 2012; Ghobadi et al., 2014; Moghadam, Ardali and Amirzadeh, 2015, 2018). All of these studies 

have focused on monitoring of fuzzy profiles and there is yet no method for analyzing the capability of 

profile process with fuzzy response data. So, taking into account the fuzzy response data to propose novel 
process capability indices is needed. This fact is well supported by the recent review by Maleki, Amiri, and 

Castagliola (2018). Since a crisp process capability indices are not adequate for the case that the response 

variable in each level of the explanatory variable is fuzzy quantities, the present study aims to extend the 
functional approach proposed by Nemati et al. (2014a) based on the fuzzy set theory to suggest novel fuzzy 

functional PCIs for fuzzy simple linear profile. The remainder of this paper is organized as follows. In 

section 2 a brief overview of functional PCIs for SLP is presented. Section 3 includes some basic fuzzy 
concepts. In Section 4, fuzzy simple linear profiles are described. The proposed methods for evaluating the 

PC of fuzzy simple linear profiles are presented in section 5. In section 6, a simulation study is carried out 

to investigate the performance of the proposed method. Section 7 presents the application of the proposed 
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method through real case study and finally, conclusions are drawn and suggestions are made for future 
research. 

 

2- Functional PCIs for SLP; a brief overview  
   A simple linear profile is usually defined by a simple linear regression model. Considering m random 

samples of size n are taken from the process, the model relating a single explanatory variable to the response 

when the process is in statistical control can be defined as: 

𝑌𝑖𝑗 = 𝐴0 + 𝐴1𝑋𝑖 + 𝜖𝑖𝑗 ,   𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚. (1) 

where 𝜖𝑖𝑗  are normally and independently distributed with the mean zero and variance 𝜎2 and 𝑋𝑖 is 

explanatory variable that is assumed to has fix values for each sample. The profile parameters including 

𝐴0, 𝐴1 and 𝜎2 are unknown and estimated by 𝑎0 =
∑ 𝑎0𝑗
𝑚
𝑗=1

𝑚
, 𝑎1 =

∑ 𝑎1𝑗
𝑚
𝑗=1

𝑚
, and 𝜎2 =

∑ 𝜎𝑗
2𝑚

𝑗=1

𝑚
, respectively. 

Where, the values of 𝐴0, 𝐴1 and, 𝜎2 for profile sample j could be estimated using maximum likelihood 

method, which can be seen in (Noorossana, Saghaei, and Amiri, 2011).  

   According to table 1, there are several PCIs for evaluating the capability of SLPs. The emphasis on using 
the functional approach, is due to its advantages in measuring PC in the entire domain of the explanatory 

variables. The indices 𝐶𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and 𝐶𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) proposed by Nemati et al. (2014a) are established 

as equations (2) and (3). 

𝐶𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) =
∫ [𝑈𝑆𝐿𝑦(𝑥) − 𝐿𝑆𝐿𝑦(𝑥)]
𝑥𝑢
𝑥𝑙

𝑑𝑥

∫ [𝑈𝑁𝑇𝐿𝑦(𝑥) − 𝐿𝑁𝑇𝐿𝑦(𝑥)]
𝑥𝑢
𝑥𝑙

𝑑𝑥
 (2) 

𝐶𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) = 𝑚𝑖𝑛 {
∫ [𝑈𝑆𝐿𝑦(𝑥) − 𝜇𝑦(𝑥)]
𝑥𝑢

𝑥𝑙
𝑑𝑥

∫ [𝑈𝑁𝑇𝐿𝑦(𝑥) − 𝜇𝑦(𝑥)]
𝑥𝑢

𝑥𝑙
𝑑𝑥
,
∫ [𝜇𝑦(𝑥) − 𝐿𝑆𝐿𝑦(𝑥)]
𝑥𝑢

𝑥𝑙
𝑑𝑥

∫ [𝜇𝑦(𝑥) − 𝐿𝑁𝑇𝐿𝑦(𝑥)]
𝑥𝑢

𝑥𝑙
𝑑𝑥
} (3) 

where 𝑈𝑆𝐿𝑦(𝑥), 𝐿𝑆𝐿𝑦(𝑥), 𝑈𝑁𝑇𝐿𝑦(𝑥), 𝐿𝑁𝑇𝐿𝑦(𝑥) and 𝜇𝑦(𝑥), are functional form of upper SL, lower SL, 

upper natural tolerance limit, lower natural tolerance limit, and mean of response variable, respectively. All 

of them are functions of explanatory variable 𝑥 ∈ [𝑥𝑙 , 𝑥𝑢], that 𝑥𝑙 and 𝑥𝑢 are the minimum and maximum 

value of the explanatory variable, respectively. The functional SLs are obtained by linear regression and 

the functional form of 𝜇, UNTL, and LNTL are as 𝜇𝑦(𝑥) = 𝑎0 + 𝑎1𝑥, 𝑈𝑁𝑇𝐿𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 3𝜎, and 

𝐿𝑁𝑇𝐿𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 − 3𝜎, respectively, where 𝜎 is the process standard deviation. It should be noted 

that, the interpretation of these two functional PCIs is conducted similar to the traditional univariate cases, 

by comparing the values of them with 1 (Nemati et al., 2014a). 

3- Some fuzzy concepts  
Here, some definitions, which will be needed throughout the paper are reviewed. 

Definition 1- �̃� = (𝑎, 𝜆, 𝛽) is called the asymmetric triangular fuzzy number with center 𝑎, a right spread 

𝛽 and a left spread 𝜆 if its membership function can be defined by equation (4). 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥 − (𝑎 − 𝜆)

𝜆
       𝑎 − 𝜆 < 𝑥 ≤ 𝑎

(𝑎 + 𝛽) − 𝑥

𝛽
      𝑎 ≤ 𝑥 ≤ 𝑎 + 𝛽

0                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

If right and left spreads of the triangular fuzzy number are equal to 𝑆, then a triangular fuzzy number called 

symmetric and denoted by �̃� = (𝑎, 𝑆) (Moghadam, Ardali and Amirzadeh, 2018). 
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Definition 2- Let �̃� = (𝑎, 𝜆𝑎 , 𝛽𝑎) and �̃� = (𝑏, 𝜆𝑏 , 𝛽𝑏) be two asymmetric triangular fuzzy numbers. The 

operators of fuzzy summation, fuzzy subtraction, and multiplication of a fuzzy number by a scalar (𝐾) are 

calculated as follows (Moghadam, Ardali and Amirzadeh, 2015). 

�̃� ⨁ �̃� = (𝑎 + 𝑏, 𝜆𝑎 + 𝜆𝑏 , 𝛽𝑎 + 𝛽𝑏   ) (5) 

�̃� ⊝ �̃� = (𝑎 − 𝑏, 𝜆𝑎 + 𝛽𝑏 , 𝛽𝑎 + 𝜆𝑏   ) (6) 

𝐾⨂ �̃� =  {
(𝐾𝑎, 𝐾𝜆𝑎 , 𝐾𝛽𝑎)           if  𝐾 > 0
(𝐾𝑎,−𝐾𝛽𝑎 , −𝐾𝜆𝑎)    if  𝐾 < 0

 (7) 

Definition 3- The 𝛼-cut of a fuzzy number �̃� (𝛼 ∈ [0,1]) is a crisp set denoted by Ã(𝛼) =
{𝑥 ∈ ℝ |𝜇𝐴(𝑥) ≥ 𝛼 }. Hence, Ã(𝛼) = [�̃�𝑙(𝛼), �̃�𝑟(𝛼)], where left and right side of 𝛼-cut set of fuzzy 

number �̃� are �̃�𝑙(𝛼) = 𝑖𝑛𝑓{𝑥 ∈ ℝ  |𝜇𝐴(𝑥) ≥ 𝛼 } and �̃�𝑟(𝛼) = 𝑠𝑢𝑝{𝑥 ∈ ℝ  |𝜇𝐴(𝑥) ≥ 𝛼 }, respectively 

(Lee, 2005). If �̃� is an asymmetric triangular fuzzy number, 𝛼-cut sets of �̃� is as equation (8). 

Ã(𝛼) = [(𝑎 − 𝜆) + 𝛼𝜆, (𝑎 + 𝛽) − 𝛼𝛽] (8) 

Definition 4- The 𝐷𝑝,𝑞-distance between two fuzzy quantity �̃� and �̃� is determined by equation (9). 

𝐷𝑝,𝑞(�̃�, �̃�) = [(1 − 𝑞)∫  [�̃�𝑙(𝛼) − �̃�𝑙(𝛼)]
𝑝
𝑑𝛼

1

0

+ 𝑞∫ [�̃�𝑟(𝛼) − �̃�𝑟(𝛼)]
𝑝
𝑑𝛼

1

0

]

1
𝑝

 (9) 

Where often, p and q are equal to 2 and 0.5, respectively. For triangular fuzzy numbers �̃� = (𝑎, 𝜆𝑎 , 𝛽𝑎) and 

�̃� = (𝑏, 𝜆𝑏 , 𝛽𝑏), the 𝐷
2,
1

2

(�̃�, �̃�) is shown in equation (10) (Sadeghpour Gildeh, 2011). 

𝐷
2,
1
2
(𝐴, �̃�) = √(𝑎 − 𝑏)2 +

1

6
[(𝜆𝑎 − 𝜆𝑏)

2 + (𝛽𝑎 − 𝛽𝑏)
2] +

1

2
(𝑎 − 𝑏)[(𝛽𝑎 − 𝜆𝑎)

2 + (𝛽𝑏 − 𝜆𝑏)
2] 

     

(10) 

Definition 5- To rank two fuzzy numbers �̃� and �̃�, one can calculate their 𝐷𝑝,𝑞-distance from fuzzy number 

�̃�. Where, �̃� is an arbitrary value which is greater (less) than �̃� and �̃�. So, for the case that �̃� is greater than 

both of �̃� and �̃�, the fuzzy number Ã is greater than or equal to the fuzzy number B̃, if and only if 

𝐷p,q(�̃�, �̃�) ≤ 𝐷p,q(�̃�, �̃�). Similarly, when �̃� is less than both of �̃� and �̃�, the fuzzy number Ã is greater than 

or equal to the fuzzy number B̃, if and only if 𝐷p,q(�̃�, �̃�) ≥ 𝐷p,q(�̃�, �̃�). 

4-  Fuzzy simple linear profiles 
   In a fuzzy SLP, the fuzzy response variable �̃� is related to only one explanatory variable 𝑋 through a 
fuzzy linear regression model. Assume that there are m sample sets for n levels of the explanatory variable. 

Therefore, we deal with samples in the form of (𝑥𝑖 , �̃�𝑖𝑗), 𝑖 = 1, 2, … , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, where �̃�𝑖𝑗 is the 

value of fuzzy quality characteristic and modeled by asymmetric triangular fuzzy number in the general 

form of �̃�𝑖𝑗 = (𝑦𝑖𝑗, 𝜆𝑖𝑗, 𝛽𝑖𝑗) in which j and i are the sample number and level of the explanatory variable, 

respectively. For each sample, suppose the relationship between the response and the explanatory variable 

can be modeled as equation (11). 

�̃�𝑖𝑗 = �̃�0𝑗 + �̃�1𝑗𝑋𝑖 , 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚.   (11) 

    In equation (11), it is assumed that 𝑋𝑖 has a fixed non-fuzzy value for all the samples. �̃�0𝑗 and �̃�1𝑗 are 

the coefficients of sample profiles and are unknown. In order to estimate the coefficients of model in 
equation (11), we can use a fuzzy linear regression (FLR) model based on goal programming developed by 

Hassanpour, Maleki and Yaghoobi (2009). This model takes into account the centers of fuzzy data as an 
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important feature as well as their spreads. Furthermore, the model can deal with both symmetric and 
asymmetric triangular fuzzy numbers (for more information, see Appendix A). So, the estimators of 

�̃�𝑟𝑗 , 𝑟 = 0, 1 are asymmetric triangular fuzzy number �̃�𝑟𝑗 = (𝑎𝑟𝑗, 𝜆𝑟𝑗 , 𝛽𝑟𝑗), 𝑟 = 0, 1. Hence, �̂̃�𝑖𝑗 = �̃�0𝑗 +

�̃�1𝑗𝑋𝑖 ,𝑖 = 1,2, … , 𝑛, 𝑗 = 1,… ,𝑚, where �̂̃�𝑖𝑗 denotes the estimated value of the response variable. Since the 

square of the deviation between the observed and estimated response variable ((�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗) ⊗ (�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗)) 

equals the square of estimation errors in FLR, and ⊕𝑖=1
𝑛 ((�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗) ⊗ (�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗)) equals the sum of 

squared errors (SSE), the mean of squared error, which is calculated in equation (12), can be considered as 

estimate of error variance of jth profile sample.   

�̂̃�𝑗
2 =

⊕𝑖=1
𝑛 ((�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗) ⊗ (�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗))

𝑛
, 𝑗 = 1,2, … ,𝑚.    

(12) 

   After applying phase I monitoring fuzzy SLPs and achieving the in-control process, all remained samples 

follow a unique stable profile model, are shown by  �̃� = �̃�0 + �̃�1𝑋. The stable values of the parameters �̃�0, 

�̃�1, and �̃�2 are assumed to be known or can be estimated from an in-control profile samples through 

equation (13) for use in PCA (Ghobadi et al., 2014). 

�̂̃�𝑜 = �̃�0 =
⊕𝑗=1

𝑚 �̃�0𝑗

𝑚
, �̂̃�1 = �̃�1 =

⊕𝑗=1
𝑚 �̃�1𝑗

𝑚
, �̂̃�2 =

⊕𝑗=1
𝑚 �̂̃�𝑗

2

𝑚
. (13) 

5- Fuzzy functional PCIs for fuzzy simple linear profile  
   In this section, to evaluate the capability of fuzzy SLPs, we introduce fuzzy PCIs to take into account 

fuzzy environments. So, the situations are investigated in which the SLs and target values of the response 
variable in each level of the explanatory variable are imprecise. In this way, we firstly extend two functional 

PCIs (𝐶𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and 𝐶𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)) proposed by Nemati et al. (2014a) based on fuzzy set theory. Then, 

since these two functional indices only focused on the process yield and cannot reflect departures of the 

process mean from the target value, we propose two fuzzy indices �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̃�𝑝𝑚𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) to 

overcome the deficiency of �̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), in considering the proximity of the process 

mean to the target. To do these, initially, we should ensure the critical assumptions of PCA which are 

stability of the profile process and normality of the response variable. In this regard, the fuzzy functional 

PCIs are calculated at the end of phase I of fuzzy profile monitoring and when the process is in-control; and 
in the case of the normality assumption of the quality characteristic, the response variable is normally 

distributed and expressed by FRV based on Kwakernaak (1978, 1979) approach. In this approach, FRV is 

defined as “a random variable whose values are not real numbers, but are fuzzy ones”. In other words, it is 

assumed that an imprecise value is assigned to a random variable with available and crisp values. Hence, 

the fuzzy observations of the response variable �̃�𝑖𝑗 are the observations of a crisp normal random variable 

𝑌𝑖𝑗. 

 

5-1- Description of fuzzy profile parameters, fuzzy SLs, and fuzzy target value  

   Assume that �̃� = �̃�0 + �̃�1𝑋 is the reference line of the fuzzy SLP obtained in phase I of fuzzy SLP 

monitoring. The �̂̃�𝑜, �̂̃�1 and �̂̃�2 are given in equation (13). So, �̃� is a fuzzy normal random variable with 

mean equal to �̃�𝑦(𝑥) = �̃�0⨁ (�̃�1⊗𝑥) in x ∈ [𝑥𝑙 , 𝑥𝑢], and variance �̂̃�2. The 𝛼-cut sets of �̃�𝑦(𝑥) are as 

equation (14). 
 

𝜇𝑦(𝑥)(𝛼) = [𝜇𝑦(𝑥)𝑙(𝛼), 𝜇𝑦(𝑥)𝑟(𝛼)] = [ �̃�0𝑙(𝛼) + �̃�1𝑙(𝛼)𝑥,  �̃�0𝑟(𝛼) + �̃�1𝑟(𝛼)𝑥] (14) 
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Also, to gain  �̂̃�2, we use the 𝛼-cut and interval algebra approach. So, the 𝛼-cut intervals of  �̂̃�2 can be 

calculated by equation (15). 

�̂̃�2(𝛼) = [ �̂̃�2𝑙(𝛼),  �̂̃�
2
𝑟(𝛼)]  

= [∑∑

((�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗)⊗ (�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗))
𝑙

(𝛼)

𝑚𝑛

𝑛

𝑖=1

,∑∑

((�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗)⊗ (�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗))
𝑟

(𝛼)

𝑚𝑛

𝑛

𝑖=1

 

𝑚

𝑗=1

 

𝑚

𝑗=1

]    
(15) 

where  

((�̃�𝑖𝑗 ⊖ �̂̃�𝑖𝑗) ⊗ (�̃�𝑖𝑗 ⊖ �̂̃�𝑖𝑗)) (𝛼) = [((�̃�𝑖𝑗 ⊖ �̂̃�𝑖𝑗) ⊗ (�̃�𝑖𝑗 ⊖ �̂̃�𝑖𝑗))
𝑙

(𝛼), ((�̃�𝑖𝑗 ⊖ �̂̃�𝑖𝑗) ⊗ (�̃�𝑖𝑗 ⊖ �̂̃�𝑖𝑗))
𝑟

(𝛼)]

= [𝑚𝑖𝑛 {(𝑌𝑖𝑗 − �̂�𝑖𝑗)
2
,    
𝑌𝑖𝑗 ∈ �̃�𝑖𝑗(𝛼)

�̂�𝑖𝑗 ∈ �̂̃�𝑖𝑗(𝛼)
 } ,𝑚𝑎𝑥 {(𝑌𝑖𝑗 − �̂�𝑖𝑗)

2
,    
𝑌𝑖𝑗 ∈ �̃�𝑖𝑗(𝛼)

�̂�𝑖𝑗 ∈ �̂̃�𝑖𝑗(𝛼)
 }] 

(16) 

   In equation (16) those answers are chosen that for each 𝛼1 < 𝛼2, 𝛼1 and 𝛼2 ∈ [0, 1], we have 𝐻𝑙(𝛼1) ≤

𝐻𝑙(𝛼2)  ≤ 𝐻𝑙(1)  = 𝐻𝑟(1) ≤ 𝐻𝑟(𝛼2) ≤ 𝐻𝑟(𝛼1), where ((�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗)⊗ (�̃�𝑖𝑗⊖ �̂̃�𝑖𝑗)) = 𝐻. Now we place 

these 𝛼-cut intervals one on top of the other to obtain  �̂̃�2. Then, we can define 𝐿𝑁𝑇�̃�𝑦(𝑥) and 𝑈𝑁𝑇�̃�𝑦(𝑥) 

as (�̃�0⨁ (�̃�1⊗𝑥))⊖  3�̂̃� and (�̃�0⨁ (�̃�1⊗𝑥))⨁ 3�̂̃�, respectively. Suppose that the SLs of �̃� are linear 

functions of the fixed values of the explanatory variable X as 𝑙𝑆�̃�𝑦(𝑥) = �̃�0
, ⨁(�̃�1

, ⊗𝑥) an 𝑈𝑆�̃�𝑦(𝑥) =

�̃�0
,,⨁(�̃�1

,, ⊗𝑥). Noted that �̃�0
,
 and �̃�1

,
 (�̃�0

,,
 and �̃�1

,,
) are the triangular fuzzy numbers of intercepts and slopes 

of 𝑙𝑆�̃�𝑦(𝑥) (𝑈𝑆�̃�𝑦(𝑥)), respectively. These fuzzy linear relationships are obtained by the FLR model 

developed in (Hassanpour, Maleki and Yaghoobi, 2009). So, the 𝛼-cut intervals of 𝑙𝑆�̃�𝑦(𝑥) and 𝑈𝑆�̃�𝑦(𝑥) 

are defined by equations (17) and (18), respectively. 

𝐿𝑆�̃�𝑦(𝑥)(𝛼)  = [𝐿𝑆�̃�𝑦(𝑥)𝑙(𝛼), 𝐿𝑆�̃�𝑦(𝑥)𝑟(𝛼)] = [�̃�0
,
𝑙
(𝛼) + �̃�1

,
𝑙
(𝛼)𝑥, �̃�0

,
𝑟
(𝛼) + �̃�1

,
𝑟
(𝛼)𝑥 ] (17) 

𝑈𝑆�̃�𝑦(𝑥)(𝛼) = [𝑈𝑆�̃�𝑦(𝑥)𝑙(𝛼),𝑈𝑆�̃�𝑦(𝑥)𝑟(𝛼)] = [�̃�0
,,
𝑙
(𝛼) + �̃�1

,,
𝑙
(𝛼)𝑥, �̃�0

,,
𝑟
(𝛼) + �̃�1

,,
𝑟
(𝛼)𝑥 ] (18) 

Moreover, target value of �̃� is defined as �̃�𝑦(𝑥) = �̃�0𝑇⨁(�̃�1𝑇⊗𝑥) where �̃�0𝑇 and �̃�1𝑇 are the triangular 

fuzzy numbers of intercept and slope of the fuzzy functional target value, respectively. The 𝛼-cut sets of 

�̃�𝑦(𝑥) can be defined similar to equations (17) and (18). 

5-2- Fuzzy functional index �̃�𝒑(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

   In this subsection, we introduce �̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) that is based on the concept of fuzzy integral. To compute 

it, we obtain it’s 𝛼–cuts that are calculated using equation (19). 

�̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼) = [
∫ [𝑈𝑆�̃�𝑦(𝑥)𝑙(𝛼) − 𝐿𝑆�̃�𝑦(𝑥)𝑟(𝛼)]𝑑𝑥
𝑥𝑘
𝑥𝑙

∫ 6√�̃�𝑟
2(𝛼)𝑑𝑥

𝑥𝑘
𝑥𝑙

,
∫ [𝑈𝑆�̃�𝑦(𝑥)𝑟(𝛼) − 𝐿𝑆�̃�𝑦(𝑥)𝑙(𝛼)] 𝑑𝑥
𝑥𝑘
𝑥𝑙

∫ 6√�̃�𝑙
2(𝛼)𝑑𝑥

𝑥𝑘
𝑥𝑙

] (19) 

where the α-cut intervals of fuzzy variance and SLs are obtained based on equations (15), (17) and (18). 

Now place these α-cut intervals one on top of the other to produce �̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒). 
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5-3- Fuzzy functional index �̃�𝒑𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

   Here we introduce �̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) which is minimum of �̃�𝑝𝑈(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and�̃�𝑝𝐿(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) indices. To find 

�̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), first we obtain 𝛼-cut intervals of each item as equations (20) and (21). 

�̃�𝑝𝑈(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼) = [
∫ (𝑈𝑆�̃�𝑦(𝑥)𝑙(𝛼) − 𝜇𝑦(𝑥)𝑟(𝛼))𝑑𝑥
𝑥𝑘
𝑥𝑙

 

∫ 3√�̃�𝑟
2(𝛼)𝑑𝑥

𝑥𝑘
𝑥𝑙

,
∫ (𝑈𝑆�̃�𝑦(𝑥)𝑟(𝛼) − 𝜇𝑦(𝑥)𝑙(𝛼))𝑑𝑥
𝑥𝑘
𝑥𝑙

∫ 3√�̃�𝑙
2(𝛼)𝑑𝑥

𝑥𝑘
𝑥𝑙

] (20) 

�̃�𝑝𝐿(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼)   = [
∫ (𝜇𝑦(𝑥)𝑙(𝛼) − 𝐿𝑆�̃�𝑦(𝑥)𝑟(𝛼))𝑑𝑥
𝑥𝑘
𝑥𝑙

 

∫ 3√�̃�𝑟
2(𝛼)𝑑𝑥

𝑥𝑘
𝑥𝑙

,
∫ (𝜇𝑦(𝑥)𝑟(𝛼) − 𝐿𝑆�̃�𝑦(𝑥)𝑙(𝛼))𝑑𝑥
𝑥𝑘
𝑥𝑙

 

∫ 3√�̃�𝑙
2(𝛼)𝑑𝑥

𝑥𝑘
𝑥𝑙

] (21) 

where the α-cut intervals of fuzzy mean, variance and SLs are obtained by equations (14), (15), (17) and 

(18). Then, we apply the ranking method mentioned in definition 5 to get �̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒). 

5-4- Fuzzy functional index �̃�𝒑𝒎(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

   To develop capability index �̃�𝑝𝑚(𝑥) for fuzzy SLP, the square form of the functional index 𝐶𝑝𝑚 for SLP 

must be firstly obtained. The index �̃�𝑝𝑚
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒) is defined based on the concept fuzzy integral. But, to 

gain �̃�𝑝𝑚
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒), we get it’s 𝛼-cut intervals based on equation (22). 

𝐶𝑝𝑚
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼) = [�̃�𝑝𝑚

2
(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)𝑙(𝛼), �̃�𝑝𝑚

2
(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)𝑟(𝛼)]

= [
�̃�𝑙(𝛼)

36(∫ �̃�2𝑟(𝛼)𝑑𝑥
𝑥𝑢
𝑥𝑙

+ �̃�𝑟(𝛼))
,

�̃�𝑟(𝛼)

36 (∫ �̃�2𝑙(𝛼)𝑑𝑥
𝑥𝑢
𝑥𝑙

+ �̃�𝑙(𝛼))
] 

(22) 

In equation (22), we define �̃� = ∫ �̃�(𝛼) 𝑑𝑥
𝑥𝑢
𝑥𝑙

 and �̃� = ∫ �̃�(𝛼) 𝑑𝑥
𝑥𝑢
𝑥𝑙

, where �̃� = ((𝑈𝑆�̃�𝑦(𝑥)⊝

𝐿𝑆�̃�𝑦(𝑥))⊗ (𝑈𝑆�̃�𝑦(𝑥) ⊝ 𝐿𝑆�̃�𝑦(𝑥))) and �̃� = ((�̃�𝑦(𝑥)⊝ �̃�𝑦(𝑥)) ⊗ (�̃�𝑦(𝑥) ⊝ �̃�𝑦(𝑥))). Therefore, 

the α-cut intervals of �̃�2, �̃� and �̃� are given in equations (15), (23) and (24), respectively. 

�̃�(𝛼) = [�̃�𝑙(𝛼), �̃�𝑟(𝛼)] =

[
 
 
 
 𝑚𝑖𝑛 {(∫ (𝑈𝑆𝐿𝑦(𝑥) − 𝐿𝑆𝐿𝑦(𝑥))

2
𝑑𝑥

𝑥𝑢

𝑥𝑙

) ,
𝑈𝑆𝐿𝑦(𝑥) ∈ 𝑈𝑆�̃�𝑦(𝑥)(𝛼)

𝐿𝑆𝐿𝑦(𝑥) ∈ 𝐿𝑆�̃�𝑦(𝑥)(𝛼)
 } ,

𝑚𝑎𝑥 {(∫ (𝑈𝑆𝐿𝑦(𝑥) − 𝐿𝑆𝐿𝑦(𝑥))
2
𝑑𝑥

𝑥𝑢

𝑥𝑙

),   
𝑈𝑆𝐿𝑦(𝑥) ∈ 𝑈𝑆�̃�𝑦(𝑥)(𝛼)

𝐿𝑆𝐿𝑦(𝑥) ∈ 𝐿𝑆�̃�𝑦(𝑥)(𝛼)
}
]
 
 
 
 

 (23) 

�̃�(𝛼) = [�̃�𝑙(𝛼), �̃�𝑟(𝛼)] =

[
 
 
 
 𝑚𝑖𝑛{(∫ (𝜇𝑦(𝑥) − 𝑇𝑦(𝑥))

2
𝑑𝑥

𝑥𝑢

𝑥𝑙

) ,
𝜇𝑦(𝑥) ∈ �̃�𝑦(𝑥)(𝛼)

𝑇𝑦(𝑥) ∈ �̃�𝑦(𝑥)(𝛼)
 } ,

𝑚𝑎𝑥 {(∫ (𝜇𝑦(𝑥) − 𝑇𝑦(𝑥))
2
𝑑𝑥

𝑥𝑢

𝑥𝑙

) ,
𝜇𝑦(𝑥) ∈ �̃�𝑦(𝑥)(𝛼)

𝑇𝑦(𝑥) ∈ �̃�𝑦(𝑥)(𝛼)
}
]
 
 
 
 

 (24) 

   It should be noted that, in equation (23), the answers are chosen that for each 𝛼1 < 𝛼2, 𝛼1 and 𝛼2 ∈ [0, 1], 
�̃�𝑙(𝛼1) ≤ �̃�𝑙(𝛼2)  ≤ �̃�𝑙(1)  = �̃�𝑟(1) ≤ �̃�𝑟(𝛼2) ≤ �̃�𝑟(𝛼1). Also, in equation (24), the answers are chosen 

that for each 𝛼1 < 𝛼2, 𝛼1 and 𝛼2 ∈ [0, 1],  �̃�𝑙(𝛼1) ≤ �̃�𝑙(𝛼2)  ≤ �̃�𝑙(1)  = �̃�𝑟(1) ≤ �̃�𝑟(𝛼2) ≤ �̃�𝑟(𝛼1). 
Finally, the α-cut intervals of �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) can be calculated by equation (25). 



10 
 

�̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼) = [√�̃�𝑝𝑚
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒)𝑙(𝛼),√�̃�𝑝𝑚

2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒)𝑟(𝛼)] (25) 

By placing these α-cut intervals one on top of the other, the �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) will be obtained. 

5-5- Fuzzy functional index �̃�𝒑𝒎𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

   To develop the �̃�𝑝𝑚𝑘(𝑥) index for fuzzy SLP, we follow similar steps in subsection 5-4. So, the index 

�̃�𝑝𝑚𝑘
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒) is defined by equation (26). 

�̃�𝑝𝑚𝑘
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒)  = 𝑚𝑖𝑛 {�̃�𝑝𝑚𝑘𝑈

2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒), �̃�𝑝𝑚𝑘𝐿
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒)}   (26) 

To obtain �̃�𝑝𝑚𝑘
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒), first we define 𝛼-cut intervals of each item in equation (26), including 

�̃�𝑝𝑚𝑘𝑈
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̃�𝑝𝑚𝑘𝐿

2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒) as equations (27) and (28). 

�̃�𝑝𝑚𝑘𝑈
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼) = [�̃�𝑝𝑚𝑘𝑈

2

𝑙
(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼), �̃�𝑝𝑚𝑘𝑈

2

𝑟
(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼)]

= [
�̃�1𝑙(𝛼)

9(∫ �̃�2𝑟(𝛼)𝑑𝑥
𝑥𝑢
𝑥𝑙

+ �̃�𝑟(𝛼))
,

�̃�1𝑟(𝛼)

9 (∫ �̃�2𝑙(𝛼)𝑑𝑥
𝑥𝑢
𝑥𝑙

+ �̃�𝑙(𝛼))
] 

(27) 

�̃�𝑝𝑚𝑘𝐿
2 (𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼) = [�̃�𝑝𝑚𝑘𝐿

2

𝑙
(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼), �̃�𝑝𝑚𝑘𝐿

2

𝑟
(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)(𝛼)]

= [
�̃�2𝑙(𝛼)

9(∫ �̃�2𝑟(𝛼)𝑑𝑥
𝑥𝑢
𝑥𝑙

+ �̃�𝑟(𝛼))
,

�̃�2𝑟(𝛼)

9 (∫ �̃�2𝑙(𝛼)𝑑𝑥
𝑥𝑢
𝑥𝑙

+ �̃�𝑙(𝛼))
] 

(28) 

In equations (27) and (28), we define �̃�1 = ∫ �̃�1(𝛼) 𝑑𝑥
𝑥𝑢
𝑥𝑙

 and �̃�2 = ∫ �̃�2(𝛼) 𝑑𝑥
𝑥𝑢
𝑥𝑙

, where �̃�1 =

((𝑈𝑆�̃�𝑦(𝑥)⊝ �̃�𝑦(𝑥))⊗ (𝑈𝑆�̃�𝑦(𝑥) ⊝ �̃�𝑦(𝑥))) and �̃�2 = ((�̃�𝑦(𝑥) ⊝ 𝐿𝑆�̃�𝑦(𝑥))⊗ (�̃�𝑦(𝑥) ⊝

𝐿𝑆�̃�𝑦(𝑥))). For obtaining the α-cut intervals of �̃�1 and �̃�2 in equations (27) and (28) we do similarly, and 

the α-cut intervals of �̃�2and �̃� are given in equations (15) and (24), respectively. The α-cut intervals of 

�̃�𝑝𝑚𝑘𝑈(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̃�𝑝𝑚𝑘𝐿(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) can be calculated by the square root of equations (27) and (28) and 

by placing these 𝛼–cut intervals one on top of other we gain �̃�𝑝𝑚𝑘𝑈(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̃�𝑝𝑚𝑘𝐿(𝑃𝑟𝑜𝑓𝑖𝑙𝑒). It 

should be noted that the sign of these two PCIs is determined based on the sign of �̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒). Finally, 

to obtain �̃�𝑝𝑚𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) we apply the ranking method mentioned in definition 5. 

5-6- Interpretation of fuzzy functional PCIs 

    A process is called “capable”, if the �̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), �̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̃�𝑝𝑚𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) 
indices are at least approximately one. To make a decision, we should compare the fuzzy functional index 

with the fuzzy number 1. By using ranking method mentioned in Definition 5, we determine the minimum 

of the fuzzy functional index and 1̃. 

 

6- Performance evaluation 
   To evaluate the performance of the new indices, a simulation model is programmed in MATLAB 

environment. The model is given by Kang and Albin (2000), i.e. 𝑌𝑖𝑗 = 3+ 2𝑋𝑖 + 𝜖𝑖𝑗, 𝜖𝑖𝑗~𝑁(0,1) with 

four fixed levels of the explanatory variable including 2, 4, 6, and 8 is used to generate necessary data. It is 

assumed that the process is in statistical control. Moreover, we consider other assumptions for modeling a 
situation where the observations of response variable at each level of the explanatory variable are fuzzy 

triangular numbers. The center of a triangular fuzzy number �̃�𝑖𝑗 is random and follows a normal distribution 
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with a mean 𝜇𝑖 = 3 + 2𝑋𝑖 and variance 𝜎2 = 1 while its spread also follows a uniform distribution in the 

interval (0,1). Fuzzy SLs of the response variable at each level of the explanatory variable are represented 

in table 2. In this example, fuzzy SLs are linear function of the explanatory variable and obtained by the 

FLR model proposed by Hassanpour, Maleki and Yaghoobi (2009). The results of fuzzy functional SLs and 

the midpoint of them which is assumed the target of process, are as 𝐿𝑆�̃�𝑦(𝑥) =

(−2.0833,0.5,0)⨁ ((2.2917,0,0)⨂ 𝑥), 𝑈𝑆�̃�𝑦(𝑥) = (5.4167,0,0.5) ⨁ ((2.2917,0,0)⨂ 𝑥) and �̃�𝑦(𝑥) =

(1.4167,0.25,0.25) ⨁ ((2.2917,0,0)⨂ 𝑥), respectively. �̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), �̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and 

�̃�𝑝𝑚𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) are obtained under different profile samples 𝑚𝜖{25, 50,100, 200} to investigate the effect 

of the sample size. The mean and variances of the profile are estimated from the random samples and then 

the fuzzy functional PCIs are calculated by the proposed method introduced in Section 5. Also, the true 
values of the PCIs are calculated based on the true values of the mean and variance of SLP.  

 
Table 2. Fuzzy SLs for each level of the explanatory variable 

𝑼𝑺�̃�𝒊 𝑳𝑺�̃�𝒊 𝒙𝒊 𝒊 

(10,0,0.5) (2.5,0.5,0) 2 1 

(14.35,0,0.5) (6.85,0.5,0) 4 2 

(18.75,0,0.5) (11.25,0.5,0) 6 3 

(23.75,0,0.5) (16.25,0.5,0) 8 4 

 

  
   The simulations were repeated 10,000 times and the PCIs were calculated in each replicate. The mean 

and the true values (TVs) of the PCIs under different sample sizes are shown in table 3.  

   Table 3 shows that as the number of profile samples increases, the mean values of the PCIs tend to the 

corresponding true values regarding the 𝐷
2,
1

2

- distance between the estimated fuzzy PCIs and the true value. 

Figure 1, shows that despite the effect of the sample size on the estimates, for sample sizes greater than 
100, this effect has an insignificant difference. Therefore, the number of profile samples equal to 100 is 

offered for remaining simulation studies.  

 

Table 3. The simulation results of fuzzy functional PCIs for fuzzy SLP under different sample sizes (𝑝 = 2, 𝑞 =
1

2
) 

𝑫𝒑,𝒒 

(�̂̃�𝒑𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

𝑫𝒑,𝒒 

(�̂̃�𝒑(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

PCIs 

 

m 

0.712 (1.347, 0.709, 1.607) 0.607 (1.394, 0.646, 1.366) 25 

0.675 (1.336, 0.698, 1.534) 0.574 (1.382, 0.636, 1.299) 50 

0.654 (1.330, 0.693, 1.492) 0.555 (1.375, 0.630, 1.261) 100 

0.644 (1.325, 0.689, 1.474) 0.546 (1.371, 0.626, 1.244) 200 

 (1.208, 0, 0.167)  (1.250, 0, 0.167) TV 

𝑫𝒑,𝒒 

(�̂̃�𝒑𝒎𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑𝒎𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

𝑫𝒑,𝒒 

(�̂̃�𝒑𝒎(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑𝒎(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

PCIs 

 

m 

0.437 (1.163, 0.605, 1.021) 0.361 (1.192, 0.548, 0.841) 25 

0.430 (1.163, 0.603, 1.004) 0.355 (1.191, 0.546, 0.824) 50 

0.426 (1.162, 0.603, 0.994) 0.351 (1.190, 0.545, 0.814) 100 

0.424 (1.160, 0.601, 0.989) 0.349 (1.189, 0.544, 0.810) 200 

 (1.082, 0.050, 0.154)  (1.109, 0.051, 0.156) TV 
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Fig 1. The values of 𝐷
2,
1

2
-distance between estimated PCIs and true value in 𝑚𝜖{25, 50,100, 200} for fuzzy 

functional PCIs  

   One of the most important features in performance evaluation of the estimated PCIs is the sensitivity of 

the index in terms of shift in process dispersion and the deviation of process mean from the target value. 
Hence, different profile variances, as well as the deviation in the intercept and slope parameters are tested 

under sample size equal to 100. Each run is replicated 10,000 times to yield the results. Figure 2 illustrates 

the performance of four fuzzy PCIs in terms of the 𝐷
2,
1

2

-distance between the estimated fuzzy PCIs and the 

true value, when variance of the profile changes. From figure 2, it can be seen that if variance of the profile 
increases, the values of the four fuzzy functional indices will decrease and vice versa. Furthermore, we can 

observe that for variance less than 2, the 𝐷
2,
1

2

-distance for �̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̂̃�𝑝𝑚𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) is much lower 

than �̂̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̂̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), while the values of 𝐷
2,
1

2

-distance becomes very close to each other 

when variance increases. 

 

Fig 2. The values of 𝐷
2,
1

2
-distance between estimated PCIs and true value for fuzzy functional PCIs based on 

different values of 𝜎2with 𝑚 = 100 
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   From table 4, we found that when small shifts in coefficients of reference profile increases, the value of 

�̂̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) remains constant while other fuzzy functional indices decrease. This behavior of �̂̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) 

index is because of its structure which is insensitive to any shifts in the process mean, so, the values of 

�̂̃�𝑝(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) are constant when shifts occur in the profile intercept and slope. Since �̂̃�𝑝𝑚𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) is a 

combination of �̂̃�𝑝𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) and �̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), it has the advantages of both of them, and can also give 

more information about the location of the process mean. In addition, it is more sensitive than other 

capability indices to any deviation in the process mean. But the values of 𝐷
2,
1

2

-distance in almost all 

simulated cases in table 4 reflect the superiority of the index �̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) over �̂̃�𝑝𝑚𝑘(𝑃𝑟𝑜𝑓𝑖𝑙𝑒). We also 

conclude that the values of the indices decrease more severely when shifts in the slope increase but this 

does not happen for the intercept.  

   As a result, regarding 𝐷
2,
1

2

-distance in almost all simulated cases are shown in tables 3 and 4 and figures 

1 and 2, the index �̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) is more efficient than other fuzzy functional indices. Thus, we suggest 

using the index �̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) to measure the process capability of fuzzy SLP processes. 
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Table 4. The simulation results for shifts in intercept and slope (𝑚 = 100, 𝑝 = 2, 𝑞 =
1

2
) 

𝑫𝒑,𝒒 

(�̂̃�𝒑𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

𝑫𝒑,𝒒 

(�̂̃�𝒑(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

Simulated case 

(𝑨𝟎,  𝑨𝟏, 𝝈
𝟐) 

0.665 
(1.364, 0.708, 1.514) 

0.553 
(1.373, 0.628, 1.258) Estimated 

(3.1, 2, 1) 
(1.242, 0, 0.167) (1.250, 0, 0.167) TV 

0.660 
(1.347, 0.701, 1.503) 

0.555 
(1.3745, 0.629, 1.261) Estimated 

(3.2, 2, 1) 
(1.225, 0, 0.167) (1.250, 0, 0.167) TV 

0.644 
(1.309, 0.683, 1.474) 

0.553 
(1.374, 0.629, 1.257) Estimated 

(3.3, 2, 1) 
(1.192, 0, 0.167) (1.250, 0, 0.167) TV 

0.632 
(1.273, 0.667, 1.452) 

0.554 
(1.374, 0.629, 1.261) Estimated 

(3.4, 2, 1) 
(1.158, 0, 0.167) (1.250, 0, 0.167) TV 

0.618 
(1.237, 0.650, 1.424) 

0.553 
(1.374, 0.629, 1.257) Estimated 

(3.5, 2, 1) 
(1.125, 0, 0.167) (1.250, 0, 0.167) TV 

0.619 
(1.238, 0.651, 1.426) 

0.555 
(1.375, 0.630, 1.261) Estimated 

(3, 2.1, 1) 
(1.125, 0, 0.167) (1.250, 0, 0.167) TV 

0.551 
(1.054, 0.567, 1.300) 

0.555 
(1.375, 0.629, 1.261) Estimated 

(3, 2.2, 1) 
(0.958, 0, 0.167) (1.250, 0, 0.167) TV 

0.483 
(0.870, 0.482, 1.174) 

0.554 
(1.374, 0.629, 1.261) Estimated 

(3, 2.3, 1) 
(0.792, 0, 0.167) (1.250, 0, 0.167) TV 

0.417 
(0.688, 0.399, 1.047) 

0.555 
(1.375, 0.630, 1.262) Estimated 

(3, 2.4, 1) 
(0.625, 0, 0.167) (1.250, 0, 0.167) TV 

0.349 
(0.504, 0.315, 0.919) 

0.554 
(1.373, 0.628, 1.258) Estimated 

(3, 2.5, 1) 
(1.242, 0, 0.167) (1.250, 0, 0.167) TV 

𝑫𝒑,𝒒 

(�̂̃�𝒑𝒎𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑𝒎𝒌(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

𝑫𝒑,𝒒 

(�̂̃�𝒑𝒎(𝑷𝒓𝒐𝒇𝒊𝒍𝒆), 𝑻𝑽) 
�̂̃�𝒑𝒎(𝑷𝒓𝒐𝒇𝒊𝒍𝒆) 

Simulated case 

(𝑨𝟎,  𝑨𝟏, 𝝈
𝟐) 

0.428 
(1.199, 0.613, 0.978) 

0.346 

(1.196, 0.540, 0.785) Estimated 
(3.1, 2, 1) 

(1.118, 1.032, 0.148) (1.115, 0.032, 0.149) TV 

0.416 
(1.182, 0.606, 0.954) 

0.336 

(1.195, 0.537, 0.765) Estimated 
(3.2, 2, 1) 

(1.101, 0.041, 0.149) (1.113, 0.042, 0.151) TV 

0.394 
(1.138, 0.589, 0.926) 

0.324 

(1.181, 0.535, 0.754) Estimated 
(3.3, 2, 1) 

(1.061, 0.005, 0.160) (1.102, 0.059, 0.162) TV 

0.375 
(1.086, 0.566, 0.912) 

0.313 
(1.159, 0.528, 0.757) Estimated 

(3.4, 2, 1) 
(1.015, 0.069, 0.177) (1.084, 0.073, 0.181) TV 

0.360 
(1.028, 0.537, 0.907) 

0.304 
(1.128, 0.616, 0.768) Estimated 

(3.5, 2, 1) 
(0.963, 0.076, 0.193) (1.058, 0.084, 0.199) TV 

0.459 
(1.087, 0.593, 1.159) 

0.399 

(1.202, 0.576, 1.011) Estimated 
(3, 2.1, 1) 

(1.011, 0.088, 0.211) (1.118, 0.097, 0.218) TV 

0.475 

(0.754, 0.396, 1.303) 
0.476 

(0.981, 0.434, 1.317) Estimated 
(3, 2.2, 1) 

(0.717, 0.083, 0.229) (0.934, 0.108, 0.257) TV 

0.255 

(0.480, 0.234, 0.757) 
0.278 

(0.758, 0.286, 0.836) Estimated 
(3, 2.3, 1) 

(0.466, 0.051, 0.171) (0.735, 0.080, 0.206) TV 

0.126 
(0.301, 0.140, 0.404) 

0.143 
(0.597, 0.189, 0.470) Estimated 

(3, 2.4, 1) 
(0.295, 0.028, 0.120) (0.586, 0.055, 0.153) TV 

0.070 
(0.185, 0.086, 0.241) 

0.083 
(0.487, 0.130, 0.294) Estimated 

(3, 2.5, 1) 
(0.182, 0.015, 0.086) (0.480, 0.039, 0.116) TV 

 

 

 

 

 



15 
 

7- Illustrative example 
   In this section, we consider the real case discussed in (Moghadam, Ardali and Amirzadeh, 2018) to 

calculate the capability of a specific process in tile and ceramic industry by the proposed method. In tiles 
and ceramics industry; the process of grinding to produce the slurry is a key process. To produce the slurry, 

a combination of materials mixed according to a predetermined formula and transferred to a ball mill device. 

The particle size distribution of the slurry is a key quality characteristic that should be kept in-control over 
time. The results of the slurry roughness tests by operators at given intervals (after 3, 6, and 9 h ball mill 

device operation) are reported in linguistic expressions. The mass distribution of particles of different sizes 

is an exponential function of the grinding time (Monov, Sokolov and Stoenchev, 2012). The Phase I fuzzy 

profile monitoring of a set of historical data in (Moghadam, Ardali and Amirzadeh, 2018) showed that 

based on 29 in-control samples, the stable model for fuzzy profile function of the process is �̃� =
(11.42,2.16,2.12)exp ((−0.18, 0.05, 0.03)𝑡).This function can be transformed into a fuzzy SLP, by the 

transformation described in (Moghadam, Ardali and Amirzadeh, 2015). So, proposed methods can be 
applied for evaluating the PC of the mentioned profile. The average of estimated parameters in 29 remained 

fuzzy SLPs leads to �̃�0 = (2.4354, 0.2097, 0.1702), �̃�1 = (−0.18, 0.05, 0.03). 
 

 

Fig 3. The membership function of �̃�2 

   Figure 3, depict the membership function of �̃�2 and it can be seen that the variance changes between 
0.0249 and 0.4841with different membership values. In this case, we set SLs of the slurry roughness at 

different grinding time based on the natural tolerance limits of the process. The FLR model in (Hassanpour, 

Maleki and Yaghoobi, 2009) is used to construct fuzzy functional SLs and the target of the process. The 

methods proposed in Section 5 can now be used to assess PC for the grinding process. The �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) 

is obtained as (0.2533, 0.9591, 4.5178), i.e. ‘approximately 0.9591’. Figure 4 depicts the membership 

function of this index.  
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Fig 4. The membership function of the index �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒)  

   To compare �̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) = (0.2533, 0.9591, 4.5178) and 1̃ = (0.5, 1, 1.5), we use the ranking 

method in Definition 5. By setting �̃� = (5.5, 6, 6.5), i.e. approximately 6, we get 𝐷
2,
1

2

(�̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒), �̃�) =

6.8914 > 𝐷
2,
1

2

(1̃, �̃�) = 5. So, �̂̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) is less than 1̃, and we conclude the grinding process is 

incapable. It seems the difference between the process mean and the target that obtained as (0.0274, 0.2359, 

2.7097), i.e. ‘approximately 0.2359’ makes the process incapable. Thus, corrective adjustments for the 

process mean are needed. 
 

8- Conclusions and future researches 
   In this study, we introduced fuzzy PCIs based on the functional approach for a linear profile where the 
response variable is imprecise. These fuzzy functional PCIs can evaluate fuzzy SLPs in circumstances that 

the SLs and target values of the response variable in each level of the explanatory variable are imprecise. 

Using the fuzzy functional PCIs, it is possible to estimate PC of fuzzy SLPs in each interval of the profile. 
To investigate the performance of the indices, simulations were done. We found that PCIs performs well 

with large sample sizes and it is a proper choice to use 100 profiles for measuring the PC of fuzzy SLPs in 

real applications. Furthermore, The simulation results indicate that �̃�𝑝𝑚(𝑃𝑟𝑜𝑓𝑖𝑙𝑒) outperforms all other 

fuzzy functional PCIs and have greater performance than the others regarding the smallest values of the 

𝐷
2,
1

2

-distance in almost all simulation runs. Finally, a practical example, based on a real data set, is presented 

and analyzed to illustrate the applicability of the proposed approach. Consequently, developing fuzzy 

approaches for evaluating the capability of fuzzy profiles in more complex structures such as polynomial, 

nonlinear, multivariate and multiple, can be areas for future research. 

 

 

 

 

 

 



17 
 

References 

Abbasi Ganji, Z., & Sadeghpour Gildeh, B. (2016a). Assessing process performance with incapability index 

based on fuzzy critical value. Iranian Journal of Fuzzy Systems, 13(5), 21–34. 

Abbasi Ganji, Z., & Sadeghpour Gildeh, B. (2016b). Fuzzy multivariate process capability vector. Journal 

of Intelligent & Fuzzy Systems, 30, 1007–1017. 

Abbasi Ganji, Z., & Sadeghpour Gildeh, B. (2016c). On the Multivariate Process Capabiity Vector in Fuzzy 

Enviorement. Iranian Journal of Fuzzy Systems, 13(5), 147–159. 

Abbasi Ganji, Z., & Sadeghpour Gildeh, B. (2019). Fuzzy process capability indices for simple linear 

profile. Journal of Applied Statistics, 47, 2136-2158. 

Abdolshah, M., Yusuff, R. M., Hong, T. S., Ismail, M. Y. B., & Sadigh, A. N. (2011). Measuring process 

capability index Cpmk with fuzzy data and compare it with other fuzzy process capability indices. Expert 

Systems with Applications, 38(6), 6452–6457.  

Alevizakos, V., Koukouvinos, C., & Castagliola, P. (2018). Process capability index for Poisson regression 

profile based on the Spmk index. Quality Engineering, 1–9. 

Alevizakos, V., Koukouvinos, C., & Lappa, A. (2019). Comparative study of the Cp and Spmk indices for 

logistic regression profile using different link functions. Quality Engineering, 31(3),  453–462. 

Bradshaw, C. W. (1983). A fuzzy set theoretic interpretation of economic control limits. European Journal 

of Operational Research, 13(4), 403–408.  

Buckley, J. J. (2004). Fuzzy statistics, studies in fuzziness and soft computing. New York: Springer Book. 

Chen, C. C., Lai, C. M., & Nien, H. Y. (2010). Measuring process capability index Cpm with fuzzy data. 

Quality and Quantity, 44(3), 529–535.  

Chiang, J. Y., Lio, Y. L., & Tsai, T. R. (2017). MEWMA Control Chart and Process Capability Indices for 

Simple Linear Profiles with Within-profile Autocorrelation. Quality and Reliability Engineering 

International, 33(5), 1083–1094.  

Ebadi, M., & Amiri, A. (2012). Evaluation of process capability in multivariate simple linear profiles. 

Scientia Iranica, 19(6), 1960–1968.  

Ebadi, M., & Shahriari, H. (2013). A process capability index for simple linear profile. International 

Journal of Advanced Manufacturing Technology, 64(5–8), 857–865. 

Fortemps, P., & Roubens, M. (1996). Ranking and defuzzification methods based on area compensation. 

Fuzzy Sets and Systems, 82(3), 319–330.  

Ghobadi, Sh., Noghondarian, K., Noorossana, R., & Sadegh Mirhosseini, S. M. (2014). Developing a 

multivariate approach to monitor fuzzy quality profile. Quality and Quantity, 48(2), 817–836.  

Guevara, R. D., & Vargas, J. A. (2015a). Process capability analysis for nonlinear profiles using depth 

functions. Quality and Reliability Engineering International, 31, 465–487.  

Guevara, R. D., & Vargas, J. A. (2015b). Evaluation of process capability in multivariate nonlinear profiles. 

Journal of Statistical Computation and Simulation, 86(12), 2411–2428.  

Guevara, R. D., Vargas, J. A., & Castagliola, P. (2016). Evaluation of process capability in non-linear 

profiles using Hausdorff distance. Quality Technology & Quantitative Management, 13(1), 1–15.  



18 
 

Hassanpour, H., Maleki, H. R., & Yaghoobi, M. A. (2009). A Goal Programming Approach to Fuzzy Liner 
Regression with Non-Fuzzy Input and Fuzzy Output Data. Asia-Pacific Journal of Operational Research, 

26(5), 587–604. 

Hong, D. H. (2004). A note on Cpk index estimation using fuzzy numbers. European Journal of 

Operational Research, 158, 529–532.  

Hosseinifard, S. Z., & Abbasi, B. (2012a). Evaluation of process capability indices of linear profiles. 

International Journal of Quality and Reliability Management, 29(2), 162–176. 

Hosseinifard, S. Z., & Abbasi, B. (2012b). Process capability analysis in non normal linear regression 

profiles. Communications in Statistics: Simulation and Computation, 41(10), 1761–1784.  

Hsu, B. M., & Shu, M. H. (2008). Fuzzy inference to assess manufacturing process capability with 

imprecise data. European Journal of Operational Research, 186(2), 652–670. 

Kahraman, C., & Kaya, İ. (2009). Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought 

Effects in Turkey. Human and Ecological Risk Assessment: An International Journal, 15(4), 789–810.  

Kang, L., & Albin, S. L. (2000). On-line Monitoring When the Process Yields a Linear Profile. Journal of 

Quality Technology, 32(4), 418–426.  

Karimi Ghartemani, M., Noorossana, R., & Niaki, S. T. A. (2016). A New Approach in Capability Analysis 
of Processes Monitored by a Simple Linear Regression Profile. Quality and Reliability Engineering 

International, 32(2), 209–221.  

Kaya, I., & Kahraman, C. (2010). Fuzzy process capability analyses with fuzzy normal distribution. Expert 

Systems with Applications, 37(7), 5390–5403.  

Kaya, I., & Kahraman, C. (2011a). Process capability analyses based on fuzzy measurements and fuzzy 

control charts. Expert Systems with Applications, 38(4), 3172–3184.  

Kaya, I., & Kahraman, C. (2011b). Process capability analyses with fuzzy parameters. Expert Systems with 

Applications, 38, 11918–11927. 

Kwakernaak, H. (1978). Fuzzy Random Variable- I. Definations and theorems. Information Sciences, 15, 

1–29. 

Kwakernaak, H. (1979). Fuzzy Random Variable- II. Algorithm and Examples for the Discrete Case. 

Information Sciences, 17, 253–278. 

Lee, H. T. (2001). Cpk index estimation using fuzzy numbers. European Journal of Operational Research, 

129(3), 683–688.  

Lee, K. H. (2005). First course on fuzzy theory and applications. Berlin: Springer-Verlag Berlin 

Heidelberg. 

Maleki, M. R., Amiri, A., & Castagliola, P. (2018). An overview on recent profile monitoring papers (2008-

2018) based on conceptual classification scheme. Computers & Industrial Engineering, 126, 705–728.  

Moeti, M. T., Parchami, A., & Mashinchi, M. (2006). A Note on Fuzzy Process Capability Indices. Scientia 

Iranica, 13(4), 379–385. 

Moghadam, G., Ardali, G. A. R., & Amirzadeh, V. (2015). Developing New Methods to Monitor Phase II 

Fuzzy Linear Profiles. Iranian Journal of Fuzzy Systems, 12(4), 59–77. 



19 
 

Moghadam, G., Ardali, G. A. R., & Amirzadeh, V. (2018). A novel phase I fuzzy profile monitoring 

approach based on fuzzy change point analysis. Applied Soft Computing Journal, 71, 488–504.  

Monov, V., Sokolov, B., & Stoenchev, S. (2012). Grinding in ball mill: modeling and process control. 

Cybernetics andnformation Technologies, 12, 1–68. 

Moradi, V., & Sadeghpour Gildeh, B. (2013). Fuzzy process capability plots for families of one-sided 

specification limits. International Journal of Advanced Manufacturing Technology, 64(1–4), 357–367.  

Nemati Keshteli, R., Kazemzadeh, R. B., Amiri, A., & Noorossana, R. (2014a) ‘Developing functional 

process capability indices for simple linear profile. Scientia Iranica, 21(3), 1044–1050. 

Nemati Keshteli, R., Kazemzadeh, R. B., Amiri, A., & Noorossana, R. (2014b). Functional process 

capability indices for circular profile. Quality and Reliability Engineering International, 30(5), 633–644. 

Noghondarian, K., & Ghobadi, S. (2012). Developing a univariate approach to phase-I monitoring of fuzzy 

quality profiles. International Journal of Industrial Engineering Computations, 3, 829–842.  

Noorossana, R., Saghaei, A., & Amiri, A. (2011). Statistical Analysis of Profile Monitoring, Wiley, New 

York. 

Parchami, A., Mashinchi, M., Yavari, A. R., & Maleki, H. R. (2005). Process Capability Indices as Fuzzy 

Numbers. Austrian Journal of Statistics, 34(4), 391–402. 

Parchami, A., Sadeghpour Gildeh, B., Nourbakhsh, M., & Mashinchi, M. (2013). A new generation of 

process capability indices based on fuzzy measurements. Journal of Applied Statistics, 41(5), 1122–1136.  

Parchami, A., & Mashinchi, M. (2007). Fuzzy estimation for process capability indices. Information 

Sciences, 177(6), 1452–1462.  

Parchami, A., & Mashinchi, M. (2010). A new generation of process capability indices. Journal of Applied 

Statistics, 37(1), 77–89.  

Pour Larimi, A. M., Nemati Keshteli, R., & Safaei, A. S. (2019). Functional process capability indices for 

nonlinear profile. Journal of Industrial and Systems Engineering, 12, 1–14. 

Rezaye Abbasi Charkhi, M., Aminnayeri, M., & Amiri, A. (2015). Process Capability Index for Logistic 

Regression Profile Based on Spmk Index. International Journal of Engineering, 28(8), 1186–1192.  

Rezaye Abbasi Charkhi, M., Aminnayeri, M., & Amiri, A. (2016). Process Capability Indices for Logistic 

Regression Profile. Quality and Reliability Engineering International, 32(5), 1655–1661.  

Sadeghpour Gildeh, B. (2011). Measurement error effects on the performance of the process capability 

index based on fuzzy tolerance interval. Annals of Fuzzy Mathematica and Informatics, 1(2), 17–32. 

Sadeghpour Gildeh, B., & Moradi, V. (2012). Fuzzy Tolerance Region and Process Capability. Advances 

in Intelligent and Soft Computing, 157, 183–193. 

Shahriari, H., & Sarrafian, M. (2009). Assessment of process capability in linear profiles. in 6th 

International Industrial Engineering Conference, Tehran, Iran. Tehran. 

Shu, M. H., & Wu, H. C. (2009). Quality-based supplier selection and evaluation using fuzzy data. 

Computers and Industrial Engineering, 57(3), 1072–1079.  

Shu, M. H., & Wu, H. C. (2012). Manufacturing process performance evaluation for fuzzy data based on 

loss-based capability index. Soft Computing, 16(1), 89–99. 



20 
 

Tsai, C. C., & Chen, C. C. (2006a). Making decision to evaluate process capability index Cp with fuzzy 

numbers. International Journal of Advanced Manufacturing Technology, 30(3–4), 334–339.  

Tsai, C. C., & Chen, C. C. (2006b). Measuring process capability index Cpk with fuzzy data. Journal of 

information & optimization science, 27(3), 733–746. 

Viertl, R. (2011). Statistical Methods for Fuzzy Data. First. Austria: John Wiley and Sons, Inc. 

Wang, F. K. (2014a). A process yield for simple linear profiles. Quality Engineering, 26(3), 311–318.  

Wang, F. K. (2014b). Measuring the process yield for simple linear profiles with one-sided specification. 

Quality and Reliability Engineering International, 30(8), 1145–1151.  

Wang, F. K. (2015). Measuring the process yield for circular profiles. Quality and Reliability Engineering 

International, 31(4), 579–588. 

Wang, F. K. (2016). Process yield analysis for multivariate linear profiles. Quality Technology and 

Quantitative Management, 13(2), 124–138. 

Wang, F. K., & Guo, Y. C. (2014). Measuring process yield for nonlinear profiles. Quality and Reliability 

Engineering International, 30(8), 1333–1339.  

Wang, F. K., & Tamirat, Y. (2014). Process yield analysis for autocorrelation between linear profiles. 

Computers and Industrial Engineering, 71(1), 50–56.  

Wang, F. K., & Tamirat, Y. (2015). Process Yield Analysis for Linear Within-Profile Autocorrelation. 

Quality and Reliability Engineering International, 31(6), 1053–1061.  

Wang, F. K., & Tamirat, Y. (2016). Process yield for multivariate linear profiles with one-sided 

specification limits. Quality and Reliability Engineering International, 32(4), 1281–1293.  

Woodall, W. H. (2007). Current research on profile monitoring. Production, 17(3), 420–425. 

Yongting, C. (1996). Fuzzy quality and analysis on fuzzy probability. Fuzzy Sets and Systems, 83, 283–

290. 

Zadeh, L. A. (1965). Fuzzy Sets. information and control, 8, 338–353.  

 

 

 

 

 

 

 

 

 

 

 



21 
 

Appendix 

A. Estimating the coefficients of jth fuzzy simple linear profile 

To estimate the coefficients of jth fuzzy SLP model in equation (11), the FLR model developed by 

Hassanpour, Maleki and Yaghoobi (2009), is used. So, the observed responses and regression coefficients 

of jth profile in equation (11), are asymmetric triangular fuzzy numbers �̃�𝑖 = (𝑦𝑖 , 𝜆𝑖 , 𝛽𝑖), 𝑖 = 1, 2, … , 𝑛 and 

�̃�𝑟 = (𝑎𝑟, 𝜆𝑟, 𝛽𝑟), 𝑟 = 0,1, respectively. Without loss of generality, assume that 𝑥𝑟𝑖 > 0 ∀ 𝑟, 𝑖. Therefore, 

the estimated value of response variable can be calculated using the arithmetic of fuzzy numbers as follows: 

�̂̃�𝑖 = (∑𝑎𝑟𝑥𝑟𝑖

1

𝑟=0

,∑𝜆𝑟𝑥𝑟𝑖

1

𝑟=0

,∑𝛽𝑟𝑥𝑟𝑖

1

𝑟=0

)    𝑖 = 1, 2, … , 𝑛,  𝑥0𝑖 = 1, 𝑥1𝑖 = 𝑥𝑖 . (29) 

The aim of this approach is to close the membership function of each estimated response to the membership 

function of corresponding observed response as much as possible. Hence, the parameters 𝑎𝑟, 𝜆𝑟, and 𝛽𝑟 for 

𝑟 = 0,1, are estimated in such a way that the deviation of centers and the spreads of the response variable 

from its estimated value is minimized. So, we use following goal programming (GP) model (Hassanpour, 

Maleki and Yaghoobi, 2009) . 

(𝐺𝑃1):𝑀𝑖𝑛 𝑍 =∑(𝑛𝑖𝐿 + 𝑝𝑖𝐿 + 𝑛𝑖𝐶 + 𝑝𝑖𝐶 + 𝑛𝑖𝑅 + 𝑝𝑖𝑅)

𝑛

𝑖=1

 (30) 

s.t: ∑ 𝑎𝑟𝑥𝑟𝑖 + 𝑛𝑖𝐶 − 𝑝𝑖𝐶
1
𝑟=0 = 𝑦𝑖 ,   𝑖 = 1, 2, … , 𝑛 (31) 

∑𝜆𝑟𝑥𝑟𝑖 + 𝑛𝑖𝐿 − 𝑝𝑖𝐿

1

𝑟=0

= 𝜆𝑖 , 𝑖 = 1, 2, … , 𝑛 (32) 

∑𝛽𝑟𝑥𝑟𝑖 + 𝑛𝑖𝑅 − 𝑝𝑖𝑅

1

𝑟=0

= 𝛽𝑖 , 𝑖 = 1, 2, … , 𝑛 (33) 

𝑛𝑖𝐾𝑝𝑖𝐾 = 0, 𝑖 = 1, 2, … , 𝑛, 𝐾 = 𝐿, 𝐶, 𝑅  (34) 

𝑎𝑟 ∈ ℝ, 𝜆𝑟, 𝛽𝑟 ≥ 0, 𝑟 = 0, 1  (35) 

𝑛𝑖𝐾 , 𝑝𝑖𝐾 ≥ 0, 𝑖 = 1, 2, … , 𝑛, 𝐾 = 𝐿, 𝐶, 𝑅 (36) 

   In GP1, for each i, 𝑛𝑖𝐶  and 𝑝𝑖𝐶 are the negative and positive deviations between the centers of observed 

and estimated response, respectively. Also, 𝑛𝑖𝐿 and 𝑝𝑖𝐿 (𝑛𝑖𝑅 and 𝑝𝑖𝑅) are the negative and positive 

deviations between the left (right) spreads of them, respectively. Furthermore, the constraints (34) are 

removable and the GP1 can be solved by linear programming methods. Since the variables in constraints 

(31), (32) and (33) are separate, the problem GP1 can be decomposed into the following three separate GP 

problems. 

(𝐺𝑃2):𝑀𝑖𝑛 𝑍 =∑(𝑛𝑖𝐶 + 𝑝𝑖𝐶)

𝑛

𝑖=1

 (37) 

s.t:     ∑ 𝑎𝑟𝑥𝑟𝑖 + 𝑛𝑖𝐶 − 𝑝𝑖𝐶
1
𝑟=0 = 𝑦𝑖 , 𝑖 = 1, 2, … , 𝑛 (38) 
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𝑛𝑖𝐶𝑝𝑖𝐶 = 0,           𝑖 = 1, 2, … , 𝑛 (39) 

𝑎𝑟 ∈ ℝ,                    𝑟 = 0, 1  (40) 

𝑛𝑖𝐶 , 𝑝𝑖𝐶 ≥ 0, 𝑖 = 1, 2, … , 𝑛 (41) 

 

(𝐺𝑃3):𝑀𝑖𝑛 𝑍 =∑(𝑛𝑖𝐿 + 𝑝𝑖𝐿)

𝑛

𝑖=1

 (42) 

s.t:     ∑ 𝜆𝑟𝑥𝑟𝑖 + 𝑛𝑖𝐿 − 𝑝𝑖𝐿
1
𝑟=0 = 𝜆𝑖 , 𝑖 = 1, 2, … , 𝑛 (43) 

𝑛𝑖𝐿𝑝𝑖𝐿 = 0,           𝑖 = 1, 2, … , 𝑛 (44) 

𝜆𝑟 ≥ 0,                    𝑟 = 0, 1  (45) 

𝑛𝑖𝐿 , 𝑝𝑖𝐿 ≥ 0, 𝑖 = 1, 2, … , 𝑛 (46) 

 

(𝐺𝑃4):𝑀𝑖𝑛 𝑍 =∑(𝑛𝑖𝑅 + 𝑝𝑖𝑅)

𝑛

𝑖=1

 (47) 

s.t:     ∑ 𝛽𝑟𝑥𝑟𝑖 + 𝑛𝑖𝑅 − 𝑝𝑖𝑅
1
𝑟=0 = 𝛽𝑖 , 𝑖 = 1, 2, … , 𝑛 (48) 

𝑛𝑖𝑅𝑝𝑖𝑅 = 0,           𝑖 = 1, 2, … , 𝑛 (49) 

𝛽𝑟 ≥ 0,                    𝑟 = 0, 1  (50) 

𝑛𝑖𝑅 , 𝑝𝑖𝑅 ≥ 0, 𝑖 = 1, 2, … , 𝑛 (51) 

   Similar to GP1, by removing the constraints (39), (44), and (49) the models GP2 to GP4 can be solved 

using linear programming methods. Note that if both positive and negative 𝑥𝑟𝑖  are considered, the above 

decomposition is no longer valid. In this case, it can be decomposed into two models, one of which finds 

the centers 𝑎𝑟 and the other one finds the spreads 𝜆𝑟 and 𝛽𝑟. 


